‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER ONE

INTRODUCTION

1.1 Overview

Through the software development life cycle a series of changes need to be
accomplished. These changes are required because of many reasons such as;
enhancement, adaption, and maintenance or fixing the program defects (Bieman, et a/,
2003). From these changes and results we can say the software is infinitely flexible
(Koru.2005). However, changes must be considered as major risk elements, since they
may impact time and cost (Koru & Liu, 2007). In addition, change-proneness of the

software may lead to specific important quality issues (Bieman, et a/, 2003).

The change history of software code provides useful information about the
evolution of programs. This information helps us to understand the overall picture of the
system evolution starting from design phase ending with maintainability phase (Al-

khiaty.2009).

Software quality is a serious issue to consider, since software is entering in all
life details starting from simple industries like children toys ending to industries like

airplane.

1.2 Dealing with Quality Problems
To deal with the quality problems we need to study how can we test and
measure the source code itself. The results from these studies and measurements

provide useful information that can help in solving such quality problems.

www.manaraa.com

1.2.1 Dynamic Testing

Dynamic testing or analysis focuses in accomplishing customer requests by
supporting all requirements and functionalities by the software as a final product

(Lochmann & Goeb, 2011).

Software testing tools are programs that try to find errors, defects, bugs, failures,
etc. in the evaluated software products. Those different terms are, sometime, different
based on the level and the nature of the errors. The errors are unexpected behavior of
the system. The defects refer to the many problems related to software products, either
external behavior or internal features, but a fault in a program which causes the program
to perform in an unintended or unanticipated manner. The failure that means the system
does not deliver a service as expected by it is user. The output of each test case in a
testing process is one of two: pass or fail. The designer of the test cases defines the
inputs for each test case along with expected outputs. On the execution, test cases are
executed and actual results are compared with expected results. For those failed test
cases (i.e. expected result is different from the actual result), a debugging process
further starts to see why those test cases produce incorrect outputs or results. Errors can
be syntax, semantic, functional, and non-functional. Errors may stop the compilation
process or may not and only cause different or unexpected behavior from those defined

by users.

1.2.2 Metrics

Studying class characteristics and identifying their attributes in terms of changes
is very useful in the maintenance process. Consequently, this will make project manager

and team to give more attention to the possibility of changes in classes during the

www.manaraa.com

project life cycle (Bieman, et al, 2003). Here where the importance of measuring

software metrics takes place.
1.2.3 Source Code Analysis Tools (static testing)

Many quality aspects can be identified by using metrics. Thus, software metrics

are tools to measure one or more code attributes (EKLOF.2011).

Source code analysis (SCA) tools are used to check the source code for attributes
such: number of lines of code or any other static metrics of the code. Examples of such
static metrics include: Lines Of Code (LOC), size, and complexity. It can be applied
after the code is written which means that it may help us to learn about the code and
possibly catch defects before testing phase. Although SCA cannot find all kinds of
defects, it can be considered as an efficient tool in terms of cost and time
(EKLOF.2011). SCA tools are usually applied automatically with the least amount of

effort and time from the users or testers side.

1.3 Sample of Source Code Analysis Tools
In this section, we will list some tool examples that are applied on the source

code specially those that we used in our experimental studies.
1.3.1 StyleCop

StyleCop is an open source static SCA tool from Microsoft that checks .NET
code for conformance of several design guidelines defined based on Microsoft's .NET
Framework (CodePlex.2011). StyleCop analyzes the code in order to apply a set of rules
which can be classified into several categories such as (CodePlex.2011): Naming,
maintainability, documentation, ordering, readability, spacing, and layout. Table 1.1

shows a sample of some warnings and their classification.

www.manaraa.com

Table 1.1: A sample SCA warning classification

Warnings Categories
The spacing around an operator symbol is incorrect. Spacing
The call to channel should only use the 'base.' prefix if the | Readability
item is declared virtual in the base class and an override is
defined in the local class. Otherwise, prefix the call with this
rather than base.
All using directives must be placed inside of the namespace | Ordering

Method names begin with an upper-case letter.

Naming Rules

The class must have an access modifier

Maintainability

A statement containing curly brackets must not be placed on
a single line. The opening and closing curly brackets must

each be placed on their own line.

Layout

The constructor must have a documentation header.

Documentation

1.3.2 JustCode

JustCode is another example of SCA tools. There are some JustCode features

that include (Telerik.2011): On-the-fly Code analysis, code navigation and search,

refactoring, quick fixes, coding assistant and hints. JustCode executes its code analysis

by applying custom inspections. There are several inspects that can be performed by

JustCode. Examples include (Telerik.2011): Identical if and else clauses, obsolete casts,

empty statements, assignments with no effect, unused private members, unused

parameters, variables, namespaces, or statements. Figure 1.1 shows a sample of SCA

output from JustCode.

public int Foo()
{

return "bar";

|// C#: An instance of type "string" cannot be returned by a method of type "int"|

}

Errors — by default Just Code underlines errors with a red line

www.manaraa.com

1.3.3 FxCop

FxCop is another example of SCA tools. FxCop is an application that resolves
assembly codes after the source codes are compiled, and notifies information about the
code assemblies, such as security improvements, possible design, performance and

localization (MSDN, 2013).

FxCop 1is intentional for class library developers. But, anyone making
applications that should conform to the .NET Framework best exercises will benefit.
Also, FxCop is useful as a pedagogical tool for people who are uncommon with the
NET Framework Design Guidelines or who are fresh to the NET Framework (MSDN,

2013).

FxCop is developed to be fully merged into the Systems Development Life
Cycle (SDLC) and is distributed as both a command-line tool (FxCopCmd.exe)
appropriate for integrated with Microsoft Visual Studio or usage as part of automated
build processes .NET as an exterior tool. And a fully distinguished application that has

a Graphical User Interface (GUI) (FxCop.exe) for interactive work (MSDN, 2013).

1.4 Problem Statement

Static source code analysis tools are software programs that are used to evaluate
programs statistically and evaluate certain characteristics based on predefined quality
standards. Unlike software testing where expected output will be (pass or fail) based on
the conformance of expected outcome with the actual outcome. In SCA, the output will

be one of three classes: error, warning or information.

Criteria are defined for what standard or typical program should be or should

have. Based on those standards, a subject code is evaluated depending on the level of

www.manaraa.com

conformance or violation of a standard, one of the three classes (i.e. error, warning, or

information) is defined to show some quality aspects of the evaluated software.

First, we have evaluated several selected free and commercial SCA tools for the
purpose of comparing, correlating and assessing the results. Our focus is on the warning
class of issues as it is considered as a vague class between errors and information where

many developers underestimate or ignore warning signs.

Second, we have evaluated the relations and the correlation between SCA
reported warnings. Extensive statistical analyses from all evaluated SCA tools are
conducted to evaluate the ability of warning reports by SCA tools to predict bugs or

defects.

Based on those relations from the different SCA tools, we have first listed the
important characteristics from all warning classes that were significant to bugs or

defects.

Moreover, we have proposed enhancements on SCA and developed a tool to
consider the major warning classes that showed high defect predictability values. The
last goal that we have performed is to evaluate the correlations between data from

software metrics tools and SCA tools.

1.5 Research Objectives
Based on the problem statement, we defined three major objectives that are

accomplished in this thesis:

e Extensively evaluate several selected free and commercial SCA tools for
the purpose of comparing, correlating and assessing the reported

information. Expected outcome has included statistical data from several

www.manaraa.com

open source evaluated projects that show all classes of warnings
collected from the selected SCA tools. Moreover, the similarities and

differences between the SCA tools will be shown.

e Evaluate the inconsistency of results and the kind of warnings that may
vary from one experiment to another given the same tool and tested
source code. Expected output have data and reports with inconsistency
between reported warnings in the tools when apply these tools more than

one run or test.

e Proposed enhancements on SCA and developed a tool to consider the
major warning classes that showed high defect predictability values.
Expected output is a tool or, for the least, a framework for the relevant
and important SCA warning information combined from all evaluated
SCA tools and possibly adding new warning classes discovered through
this thesis and evaluate the correlations between data from software

metrics tools and SCA tools.

1.6 Research Importance

Software quality tools are used to assess quality of software through all
development stages. However, there is a little public information about test evaluation
of the accuracy and value of the warning that are reported from some of these tools

(Ayewah, et al, 2007).

By using static SCA tools we can study the architecture of the source code
packages (EKLOF.2011). Therefore, we have tested several codes downloaded from

SourceForge. NET to evaluate the value of different warning messages in that code

www.manaraa.com

project and see if such warning messages can correlate with bug or defect data collected

from the source codes.

1.7 Thesis Structure

The following chapters of this thesis are organized as the following: Chapter two
presents related studies to software quality. Chapter three presents static code analysis
tools. Chapter four shows the research goals and approaches. Chapter five presents
experimental results and analysis. Chapter six describes how to use the proposed tool.

Chapter seven presents the conclusions and future work.

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER TWO

RELATED WORKS

This chapter is a literature survey of the previous work that search in the history
of software metrics, software analyzing, and software maintainability in order to

enhance the quality and maintainability even after the product released.

It is divided into four sections starting with first section that describe software
metrics their importance as attributes of software, and their role in facilitating software
maintainability. Second section describes software quality. The Third section considers
testing and SCA tools. Finally fourth section is dealing with software maintainability

and changes as the final step in the software development life cycle.
2.1 Software Metrics and Class Change Proneness

Studying software metrics class characteristics and identifying their attributes in
term of changes is very useful in the maintenance process. Consequently, this will make
encourage project manager and his team to give more attention to the possibility of
changes in classes during the project life cycle (Bieman, et al/, 2003). Here where the

importance of measuring software metrics take place.

According to Girba et al. (2004), their approach depends on the changes in the
evolution of the Object Oriented (OO) software system by providing historical
measurement study. The study focuses on the change in the history of a class by
observing the change in the nature of methods in different versions, that means they
measure the change by using one main code attribute (number of methods) add or

remove method to certain class. Form the number of methods metrics can be derived

www.manaraa.com

another two different metrics, the Latest Evolution Of Number Of Methods (LENOM)
and the Earliest Evolution Of Number Of Methods (EENOM). By these two metrics the
change in size inside each class over the software history different versions can be
known and changes here focus only on the number of methods that added or removed

from each class over different releases.

Koru and Liu (2007) focus on change-prone classes by providing tree-based
model that shows the class characteristics, they test Pareto’s law for the open source
code programs which state that 80% of code changes are centered at 20% of the classes.
They mainly searched in how to identify change-prone classes and their characteristics
by trying to observe the change of set of static metrics of a group of products with
different releases of an open source project, they prove the validity and applicability of
Pareto’s law for open source programs, they also provide useful guidance in

development and maintenance of large-scale open source programs.

According to Basten and Klint (2009), finding and discovering the facts from a
source code is an important step while software analysis is done. Several experiments
are done and found that extracting facts from any source code then writing them in a
large wide of programming languages; it will lead to hard working and error prone.
Because of these reasons they developed a new technique which called DeFacto. It is

language-parametric analysis software for fact extraction from the software source code.

According to Bieman, et al. (2003), four research questions were treated. The
first research question was about visualization and identification of change-prone sets of
classes in an object-oriented framework. The second research question was to do with
differentiating change-prone clusters from local change-proneness of classes. Also this

method was displaying how to determine the degree to which classes are change-prone

10

www.manaraa.com

both in their interplays with others and locally. This method was applied to a
considerable case study. For this case study, in response to the third research question
that which modifies interplays between classes do not necessarily imitate functional
interplays in the resolve of the framework. This which can have a diversity of causes.
An example would be refinements of specific factors such as performance. Performance
refinements may trigger concurrent alterations in classes that otherwise do not react
with each other. On the other hand, in response to fourth research question, cluster
change-proneness versus local was visualized through the alter-architecture graph and
paralleled it to the design graph. We also differentiated between alter-prone clusters of
classes which did not include in patterns and those which are included. The
visualization was straightforward and simple and driven by the alteration measures that
were identified. Future work in this field involves the representation of other
measurements such as size of box symbolizing size of class, utilizing of color, and

covers of alter-architecture versus rational architecture.

According to Romano and Pinzger (2011), interfaces declare contracts that are
denoted to stay stable during the development of a software framework while the
concrete classes implementation (a subclass class can be instantiated that implements all
the missing functionality) is more likely to alter. This guide to another evolutionary
demeanor of interfaces paralleled to concrete classes. This behavior was experimentally
examined with the C&K metrics that are broadly utilized to estimate the implementation
quality of interfaces and classes. The outcomes of the study with two Hibernate projects
and eight Eclipse plug-in and indicate that, the Interface Usage Cohesion (IUC) metric
shows a more powerful connection with the number of fine-grained Source Code

Changes (SCC) than the C&K metrics when stratified to interfaces, also The IUC metric

11

www.manaraa.com

can ameliorate the performance of foretelling models in categorizing Java interfaces

into two categories, change-prone and not change-prone.

According to Romano et al. (2012), Anti-patterns have been defined to mean
“poor” solutions to resolve and perform problems. Previous researches have indicated
that classes impacted by anti-patterns are more change-prone than classes that did not
impact by anti-patterns. A deeper premeditation was provided into which anti-patterns
direct to which kinds of alterations in Java classes. The change-proneness of these
classes was analyzed taking in consideration 40 kinds of (SCC) derived from the
version control depository of 16 Java open-source frameworks. Classes impacted by
anti-patterns alter more repeatedly along the development of a framework; Classes
impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-patterns are
more probable to be altered than classes impacted by other anti-patterns in addition that,
specific anti-patterns lead to specific kinds of source code alterations, like as
Application Programming Interface (API) alterations are more probable to be shown in
classes impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-

patterns.

Shatnawi and Li (2008) investigated three publications of the Eclipse project and
detected that although several software metrics can still prognosticate class fault
proneness in three errors - acuteness categories, the thoroughness of the prognosis
minimized from publications to publications. Moreover, the Researchers detected that
the prognosis cannot be utilized to construct a software metrics paradigm to recognize
fault-prone classes with admissible accuracy. SHATNAWI‘s findings propose that as a
software develops, the utilize of certain usually utilized metrics to recognize which

classes are more prone to faults turns into increasingly complicated.

12

www.manaraa.com

Zhou and Leung (2006) utilized machine learning concept and logic regression
method to experimentally examine the advantage of metrics of Object-oriented analysis
and design (OOAD), particularly, a subset of the Chidamber and Kemerer metrics
suite- composed of six metrics numbered for each class - in prophesying error-
proneness when taking error acuteness into consideration. The findings depend on a
public domain National Aeronautics and Space Administration (NASA) data set, show
that 1) statistically, many of these Object-oriented design metrics are affined to class
error-proneness across fault acuteness, and 2) the prognosis capabilities of the examined
metrics extremely based on the acuteness of faults. More specifically, these Object-
oriented design metrics are capable to divine low acuteness errors in error-prone classes

better than high acuteness errors in error-prone classes.

Gyimothy et al. (2005) calculate the metrics of object-oriented design given by
Chidamber and Kemerer metrics suite to explain how error-proneness discovery of the
source software code of the electronic mail and open sourceWeb suite called Mozilla
Application Suite can be achieved. The researchers examined the values acquired
against the faults number detected in its error database — referred to as Bugzilla —
utilizing machine learning concept and logic regression method to prove and examine
the utility of these object oriented metrics for error-proneness prediction. The
researchers also paralleled the various versions metrics of Mozilla to realize and
examine how the divined error-proneness of the software altered during its development

period.

13

www.manaraa.com

2.2 Testing and Source Code Analysis Tools

EKLOF (2011) conclude that, developing complicated software productions
necessarily introduces flaws. Most of these defects can be grasped during testing phases
in the software development process, with the assistance of test cases or code reviews.
Furthermore, it is concluded that, static code analysis must be utilized pending the
implementation stage, during test analysis and during integration testing — a type of
testing is used to test software interfaces and interactions that occur between the

software components.

According to Ayewah et al. (2007), the research focused on evaluating the
accuracy and value of warnings that the analysis tools usually report as a result. They
examined the FindBug as a software analysis tool that find defects in Java programs.
They discussed different kinds of warnings generated and their classifications in to false
positive, trivial bugs, and serious bugs. They also tried to answer many questions such
as why the static analysis tools defect true but not important bugs. They report their
experiments from integrating static analysis in to the software development process at

Google.

According to Zheng et al. (2006), defects and failure reports that are the result
of static analysis tools applied over three selected industrial programs were proposed,
they found that: Static analysis tools are good choice for detecting software faults and
defects in term of time. Static analysis tools are perfect for improving current versions
to new releases of software by focus on complicated, operational, and algorithmic
defects. From their statistical result analysis they found the number of defects can
indicate for the nature of the problem and these statistical tools can work together with

other fault-defect software for producing high quality software.

14

www.manaraa.com

Lucia el at. (2010) using Eclips plug-in as a static analysis tool to extract the
design pattern from an object oriented source code, to perform design pattern recovery
and behavioral analysis and monitoring. According to Sharif and Maletic (2010)
recovering source code design pattern one of the most important steps for program
maintenance since it gives important information that could help in understanding the
semantic and logic together with system design which helps in system documentation

and system redesigning.

According to Black et al. (2010), no amount of correction and analysis can give
software product high levels of correctness, quality, security, or other serious properties.
Successful choices of platform, programming language, are more important than
reactive efforts. Notwithstanding code inspection or testing (dynamic analysis) has
benefits. Testing has the feature of check the behavior of the code in execution. By
contrast, only static analysis can be anticipated to detect malignant trapdoors.
Executable or binary code analysis averts suppositions about source code semantics or

compilation.

According to Mahmood et al. (2010), some programmers depend on software
testing stage to find existing errors and bugs in the software. The inherent obstacle of
testing that it endeavors at verification of software requirements rather than detecting
bugs and errors in the software. The same thing happened with the quality assurance of
the software which checks the software product under different status rather than
finding new bugs in the software. So there is a need to use security at early phase of
software development process. One of the most effective and popular method to fulfill
this goal is manual code review, but this mode is considered costly and needs
specialized knowledge in software implementation stage. One of the alternative and

most applicable methods is to perform static code analysis utilizing certain tool at an

15

www.manaraa.com

early phase of software development process. Static code analysis method can
ameliorate performance as well as better usage of software resources with respect to
effort and time. Furthermore, there are several commercial as well as open source tools
used for this goal. Each one of these tools uses various technique and ways for static
code analysis. One of the latent issues with static code analysis method is the ability to
reduce the pseudo alarms, and to correctly distinguish the existing code-related

vulnerabilities.

According to Abraham et al. (2012), during the coding stage, engineering groups
either automatically or manually transform the design documents code, in other words,
the code is written in this phase. The application of techniques for testing and
verification in this stage is described code investigation and the objective is to generate
robust code by proving the absence of bugs such as execution errors. This can be
achieved with formal techniques combined with static code analysis — programmers
can utilize static code analysis tools to test that the software is free of findable execution
errors. On the other hand, the author found that testing phases —that are performed
during software development process — may flop to find some bugs unless
comprehensive and tiring testing is used. Furthermore, many errors stay in the software
after the verification and testing processes were accomplished. These defects remain
because comprehensive testing is usually not practical. Other methods must be utilized
to remove remaining bugs, such as using of static code analysis tools to ameliorate

quality of code.

16

www.manaraa.com

2.3 Software Quality

In quality problems we need to study how we can test and measure the source
code itself, the results from these studies and measurements provide useful information

helps in solving such quality problems.

According to Bieman et al. (2001), the focus was on assessing the software
design’s quality and developing software, by specifying the relationships between
design structure and other quality factors such as reusability, maintainability, testability,
and adaptability. They studied the architectural design of the class in order to predict
future class changes and analyze 39 commercial object oriented software systems by
using set of static metrics. They found that there are three kinds of classes that are the
most change-prone on the system over time, the large class, the class that inherited as a

super class, and the class that participate in the design patterns.

As illustrated by Lochmann and Goeb (2011), a common foundation aimed to
give information about disciplines and facilitates tracing a certain code, and global
framework describes all concepts related to software quality were searched. They
provide a general quality model in order to describe different attributes related to
quality, relying to activities related to quality such as maintainability and usability, the
model can be integrated with all standard concept, quality models, guidelines, and
statics code checkers rules. They showed that the quality model could describe the
interrelations of disciplines such as software requirements and test reaching to software

quality.

As illustrated by Deissenboeck et al. (2007) the quality model criticisms
analyzed them as a result of unclear definition of quality models and describe their

purposes and usage scenarios. Critique of current models was used as general

17

www.manaraa.com

requirements to evaluate, and improve the existing models or even develop new
enhanced models from scratch. They introduced three clear definitions for quality model
as a concept to reflect the importance of quality model’s purposes as follows: Quality
model: a model to describe, assess, and predict quality. Quality Meta model: a model
with rules needed to build a specific quality models. Quality modeling framework: a

framework define, evaluate and improve quality.

As illustrated by Deissenboeck et al. (2009) they propose 2-dimentions model of
maintainability that to which studies the system from maintainability perspective. They
separate the maintenance activities from the system properties to identify the quality
criteria and allow justifying their independencies, which helps to view the quality model
in a structures design used in industrial project environments. Their model construction
based on an explicit quality Meta model, which made the system more systematic and
preciseness. The applicability of the model is confirmed by applying the model over a
case study, they created a model of the maintainability of MATLAB Simulink models

to use it frequently in model-based development of embedded systems.

As illustrated by Khaddaj and Horgan (2005), the traditional quality models
used hierarchical techniques with restricted domain of factors that define quality, so
they introduced a new model for handling software quality confirmation that dealing
with the problems of old approaches and come with new factors of quality as common
measurement instrument that can determine and analyze quality factors in technological
enhancement way. Their approach was more flexible, since it can be extended to satisfy

user requirement and add more details derived from the customer need.

According to Kuhn et al. (2006), they presented a new technique called

Semantic Clustering based on Latent Semantic Clustering and Indexing to gather the

18

www.manaraa.com

lingual information in the source code that use a same vocabularies. After that, they
interpreted them in order to detect and discover what is the notion of the source code
and to support program understanding by retrieve the topics including the same
vocabulary. Simply, this process is done by a number of steps, beginning by comparing
all topics together then they tied them by links. According to the first two steps, tables
are drawn automatically according to retrieval data. After that, visualization is applied

over the system to describe how they are divided.

According to Drake (1996), a project requires actual measures from actual data.
If software productivity factors were not really understood, then it will not be known
how to ameliorate the development processes. None of process "standards" the present
or suggested software quality compels the details of the “software development
process”, thus an actual software process must be constructed from within. But, even
when achieved for the proper reasons, will turn on established rules and demeanor
patterns and will turn the status in quo. More significantly, it will turn on the
perceptions and brains of people. The significance of the people must be recognized in
the process. Higher productivity and amended quality can be accomplished by tapping
their concealed strengths. The suitable use of statistical and metrics techniques can help
to supply support to the software development teams and measure progress , whilst at

the same time improving quality , alleviating risk, and minimizing cost.

According to Jones (2012), In order to create righteous economic patterns of
software maintenance, development, and quality control it is imperative to have
rigorous measurements that use rigorous metrics. The industry cannot endure the
errors and gaps of poor metrics like as technical debt, cost per defect, and lines of code.

The integration of function point metrics integrated with Defect Removal Efficiency

19

www.manaraa.com

metrics (DRE) can view the actual cost of quality and clarify the fact that obtaining high

quality is the most cost-effective method to construct software.

Engelbertink (2010) was presented six methods to economize software
maintenance costs. These are often relied on experimental studies. The Omnext CARE
idea was described, a workable solution for establishing continual incremental
amelioration and so decreasing software maintenance costs. Moreover, the unique state-

of-the-art abilities of Omnext’s Source2VALUE technology were described.

2.4 Maintenance

Maintainability one of six characteristics refers to quality, analysis, test, and
check stability and changeability of quality models. It is one of the major software

costs that concerned during the development life cycle of the software (Al-khiaty.2009).

As illustrated by Riaz et al. (1993), measuring and assessing the quality metrics
of maintainability were their research interests, they introduced a clear definition to
distinguish between software maintenance, and software maintainability as maintenance
vs. maintainability reflect the process vs. quality metrics which in turn reflect the cost
vs. quality metrics measurement respectively. Their focus was on the maintenance
because of its impact in improving and avoiding future defects, and its role in reducing
the total cost and time consuming during the whole software development life cycle
stages. To predict and distinguish future improvement activities they used the
systematic review to generate set of questions that could help to provide more details
about the whole domain and suggest that there is a relationship between the software

maintainability estimation and models.

According to English et al. (2009), maintainability is one of the most important

factors that helps to save time and resources in the long term periods, they studied

20

www.manaraa.com

maintenance by examine part of source code of any program that expected to have
defects so it need to change. They did experimental study to have information about
number, different faults and the desired changes that need to be applied on part of code.
They use both Pareto’s law and Kemerer metrics for analyzing the information and

identifying classes that most likely to change, respectively.

According to Bernstein et al. (2007), a new technique discovered to predict the
defects in any software in order to write bug-free software. They discussed that the
temporal features of the data is able to prediction performance, also they used the non-
linear models to discover the relationship between the defects and features which it may
hidden. As a result of maintain the reliability of the prediction. They depended on an
automated feature selection algorithm called tree-based induction, in order to predict the

location of defect, and to predict a number of bugs.

According to Canfora and Cimitile (2000), Object technology has become
growingly common in these days and the most of the new frameworks are presently
being evolved with an object-oriented technology. Among the essential reasons for
using an object-oriented technology is consolidated modifiability, and thus simpler
maintenance. This is obtained through notions such as dynamic binding, classes,
inheritance, information hiding, and polymorphism. But, there is no enough data that

experimentally show the effect of object-oriented technology on maintenance.

According to Edberg et al. (2012), many sides of software maintenance
operations are badly understood in spite of the fact that the plurality of resources for
software development in most organisms is dedicated to maintenance. EDBERG’s study
showed that single developer perceptions and differences have a far greater effect in the

selection of a maintenance methodology than is the situation for the selection of a

21

www.manaraa.com

formal (initial) software development methodology. Participants in the study
systematically profited private maintenance methodologies that were unified from
elements of various initial development methodologies. Finding that initial education
and training robustly impacted the expansion of these personal maintenance techniques

(methodologies).

Xiong et al. (2011) looked into the stochastic demeanors of maintenance
activities and operation of software frameworks. The demeanors are depicted under the
frame of the Non-homogeneous Continuous Time Markov Chain (NHCTMC). Then the
cost brought in by nonexistent time is examined. Discussing how to minimize the effect
of unavailability by the optimality of maintenance policy is resolved and altering
maintenance policy. A cost model is suggested for the objective of quantitative analysis.

In addition, rate-based simulation is performed to simplify the research.

22

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER THREE

STATIC CODE ANALYSIS TOOLS

3.1 Static Code Analysis Tools

Static SCA tools are software programs that collect information from the source
code with the goal of trying to verify all potential tracks within a software program
without executing the program. Certain characteristics will be statistically evaluated,
based on predefined quality standards. A static code analysis tool should be able to
efficiently locate faults such as under flow or over flow in an arithmetic operation, out-
of-bounds array accesses, memory allocation errors and conflict code fragments that

may go unnoticed during dynamic tests.

In the phases of software development can apply static code analysis in the early
phases. And can be applied to the code are incomplete and incorrect, as there are no test
cases must be. Unlike software testing where expected output will be (pass or fail)
based on the conformance of expected outcome with the actual outcome. In SCA tools,

the output will be one of three classes: error, warning or information.

In computer technology, a software bug is a fault in a computer program that
causes an unexpected result or blocks it from operating properly. Some bugs may only
impact a program under specific situations. Others may be more critical and cause the
software code to be unsteady or even unusable. A simple failure in the code can cause
serious problems. For example, if the programmer fortuitously wrote a code to add two

numbers to each other when it should multiply them, the remnant of the code will give a

23

www.manaraa.com

wrong result. Next sections are description of the three class of information that is

provided by SCA tools.

3.1.1 Warnings

According to Slaughter and Delwiche (1995), Warning messages from diagnostic
messages warns construction that cannot be wrong, but that is decisive, or indicate that
there is potential for future errors in the program. Warnings are less terrible than errors.
Although some professional programmers, try to decrease the number of warnings,
sometimes the situations that result in warnings are not serious. Other situations may
indicate serious problems which, if unfixed, will render the results valueless. All

warnings should be checked to judge their seriousness.

In other words, warning is an issue with your program, happened when the compiler
hits a statement that is valid but probably not what you meant. Warnings are not errors -
the compiler can ignore them- and do not break compilation or block the compiler from

generating code.

Although the warnings should not be ignored, they are not something serious
enough to actually prevent the program from compiling. Usually, compiler warnings are
hints that something might go erroneous at runtime. A typical mistake might be made
that the compiler knows about. A popular example is using the assignment operator, '=°,
instead the equality operator, '==°, inside a while statement. Other example is using

variables that might not have been initialized.

Nevertheless, compiler warnings aren't going to halt the program working
(unless program is told to treat warnings as errors), thus they are perhaps a bit less

complicated than errors. In other words, the warning is a code statement looks suspect

24

www.manaraa.com

and can be ignored. However, warnings usually indicate that a code statement is

incorrect with the input file.

3.1.2 Errors

According to Slaughter and Delwiche (1995), errors are program statements that
are definitely wrong, and that deny the compiler from finishing the compilation of the
compiled program. These include lines or statements that are usually missing
semicolons, spelling errors, or incorrect syntax. For instance, Lines of code in Java or
C# should have (;). The compiler errors will always contain a line number at which the

error was discovered. These types of syntax errors are called compiler errors.

There is another type of errors called Linker errors. Unlike compiler errors,
errors are problems with the link determine the definition of structures, global variables,
functions, or categories that were used, but did not know, in the source code file.

Mostly, we will be link errors of the form "could not find a definition of X".

Generally, the compilation process will start with a chain of compiler warnings

and errors, once all of them have been fixed, and then linker errors will be presented.

3.1.3 Information
Information messages are messages that will be generated when a function or a
variable is declared while they are not used in the program. These messages inform

about the status of the program such the number of records.

25

www.manaraa.com

3.2 What can Static Code Analysis Accomplish?

According to Vink and BV (2010), the key reasons for using static code analysis
are twofold. The first is to minimize the costs and time of developing source code. The
second is to increase revenue and decrease business risk by supplying reliable and
responsible software to customers. Static code analysis is used to forcefully direct the
code in a way as to be readable, less prone to mistakes and reliable on future tests. This
also impacts the verification of the source code after it is ready, minimizing the number

of errors found in additional implementations of the source code.

According to Gomes et al. (2009), static code analysis is used to analyze of
computer software which is accomplished without the execution of the codes, as
contrary to dynamic analysis or testing - codes. Commonly, the analysis of computer
software is performed on some version of the object code and in the other states on the
source code. Programmers make little faults all the time, like an additional parenthesis
here, a missing semicolon there, and so on. Most of the time these errors are illegal and
will be rejected by the compiler. The compiler observes the error then the
programmer repairs the code mistakes, However, to most safety vulnerabilities this is

a rapid scenario of feedback and response which is not usually applied.

Static code analysis is used to recognize many common programming problems
before a software program is released. Static analysis endeavors to check the text of a
code statically, without trying to execute it. In theory, static analysis tools can check
either a source code of a program or a program’s compiled form.

According to Gomes et al (2009), static code analysis can be done using
automated tools or manual reviewing. Static analysis tools are more efficient than

manual reviews because they are faster. Programs can be evaluated much more

26

www.manaraa.com

repeatedly, and some of the knowledge is encapsulated in the static code analysis tools

required to perform this kind of code analysis.

Programmers may depend on a compiler to apply the finer points of
programming language syntax. A perfect static analysis tool can effectively apply the
tool without being conscious of the finer points of the more hard to detects bugs.
Moreover, examining process for bugs is complicated because they often occur in hard-

to-reach cases or exist in uncommon circumstances.

Static analysis tools can look more black corners of the program with fewer
hubbubs than dynamic code analysis, which requires the implementation of the code.
On the other hand, static analysis has also the possibility of their application before the
source code up to the level of completion of writing the code can test the glory of the

application.

3.3 Analysis and Comparison: Source Code Analysis Tools
In this section, three SCA tools specially designed for Microsoft .NET
programming language will be analyzed. These are FxCop, StyleCop, and JustCode.

FxCop and StyleCop are Open-source products, but JustCode is a commercial product.

3.3.1 Analysis: Source Code Analysis Tools

A key difference between StyleCop and FxCop is that StyleCop analyzes C#
source code, and cannot analyze another .NET language source codes. On the other
hand, FxCop works for any .NET programming language after the source codes are
compiled. StyleCop is interested in how C# source code looks, provides programmers
with an efficient way to follow C# coding standards, focused on code style, comments,

naming convention, spacing, etc.

27

www.manaraa.com

FxCop focuses on how the .NET framework classes are used. It concentrates on
the Microsoft Design Guidelines and analyzes the code seeking possible security and
performance issues. In other words, FxCop and StyleCop are related; they complement
each other, because each tool executes some different code analysis tasks. Despite their
different rules, StyleCop can be compared with FxCop in that both are used as SCA

tools.

3.3.1.1 StyleCop Tool

StyleCop is an open source static SCA tool for Visual Studio produced by
Microsoft that checks C# source code to determine if it is correctly formatted. StyleCop
analyze the code in order to enforce a set of styles and consistency rules which are

classified into the following categories:

» Spacing

= Readability

* Ordering

*= Naming

= Maintainability

= Layout

= Documentation

StyleCop includes both command line and graphical user interface versions of

the tool. It is also possible to create new StyleCop rules to be used.

28

www.manaraa.com

= Spacing Rules

Spacing rules apply spacing requirements around symbols and keywords in the

source code. Table 3.1 shows examples of spacing rules.

Table3.1: Spacing rules and examples

Warnings

Example of code

The spacing around the keyword 'for' is
invalid.

for(int row = 0; row < bitmap.Height; row ++)

Invalid spacing around the semicolon.

Public CommonUltils.HistoryListInputHistory {get;
set; }

The spacing around the symbol "'='is
invalid.

if(oBuffer!=null)

The documentation header line must start
with a single space.

///loop through all connected chatters and invoke
their

The comment must start with a single
space

//for WPF Dispatcher

The preprocessor type keyword must not
be preceded by a space

region InteropServices.Marshal mathods

Invalid spacing around the opening
parenthesis

if(oBuffer!=null)

Invalid spacing around the closing
parenthesis

if(hDIB!=(int)0)

Invalid spacing around the opening square
bracket

dsBooks.Tables ["Authors"].DefaultView

Invalid spacing around the closing square
bracket

Trim(new char[]{\""})

Invalid spacing around the opening curly
bracket

Trim(new char[]{\""})

Invalid spacing around the closing curly
bracket

Trim(new char[]{\""})

Invalid spacing around the closing attribute
bracket

[DllImport("olepro32.dll", CharSet
=CharSet.Unicode, ExactSpelling=true)]

Invalid spacing around the negative sign

(Filename,-1,null,null,0)

Ol LAC U Zyl_ﬂbl

29

www.manaraa.com

The code contains multiple spaces in a row. | Application.StartupPath + "\\errors.log"
Only one space is needed

Tabs are not allowed. Use spaces instead currentSession.Abort();

All warnings in the Table 3.1 will be explained, one by one, the first one is “The
spacing around the keyword 'for' is invalid”. This warning is caused when the spacing
around a C# keyword is improper. There are some C# keywords that must always be
followed by a single space, compared with other keywords must not be followed by any

space.

These C# keywords must always be followed by a single space: stackalloc,
catch, foreach, from, group, if, where ,in, fixed, for, into, join, let, lock, return, select,
orderby , switch, throw, using, while, yield. Compared with following keywords must
not be followed by any space: default, checked, sizeof, unchecked, typeof. The new
keyword should be followed by a space or not depend on the code sentence, always
should be followed by a space unless it is used to create a new array. In this case no

space should be between the opening array bracket and the new keyword.

On the other hand, the second warning is “Invalid spacing around the
semicolon”. This warning is resulted from an incorrect spacing around a semicolon.
Unless the semicolon is the last character on the code line, A single space should be
constantly preceded it, and unless it is the first character on the code line, it shouldn’t be

preceded by any whitespace. In order to solve a contravention of this rule, the

30

www.manaraa.com

semicolon should not proceeded by any space, and it should be followed by a single

space.

According to the following warning in from Table 3.1, “The preprocessor type
keyword must not be preceded by a space”. This warning is caused when a C#

preprocessor-type keyword is preceded by a space. For example:

region InteropServices.Marshal mathods

The warning “Invalid spacing around the opening parenthesis” is resulted from
an incorrect space for an opening parenthesis inside a C# code statement. If an opening
parenthesis is the first character on the line, or it is preceded by certain C# keywords
such as while, if, or for, it should be preceded by any whitespace. When an opening
parenthesis is preceded by an operator symbol inside an expression, a whitespace is
permitted to be followed by an opening parenthesis. Moreover, “Invalid spacing around
the opening square bracket” warning is result from incorrect space for a closing

parenthesis inside a C# code statement.

A closing parenthesis should never be preceded by whitespaces. In most cases, a
closing parenthesis should be followed by a single space, unless the closing parenthesis
comes at the end of a cast, or the closing parenthesis is followed by certain types of

operator symbols, such as positive signs, negative signs, and colons.

The warning “Invalid spacing around the opening square bracket” is resulted
from incorrectly spaced for an opening square bracket inside a C# code statement; then
Whitespace is preceded or followed by an opening square bracket inside a statement. A
whitespace must be followed by an opening square bracket just in these suitcases, if it is
the first or last character on the line; moreover, when the spacing around a closing

square bracket is spaced incorrectly, the “Invalid spacing around the closing square

31

www.manaraa.com

bracket” warning occurred. If a closing square bracket is the first character on the line, a

space must be followed by a closing square bracket.

The warning “Invalid spacing around the opening curly bracket” is resulted from
incorrectly spaced for an opening curly bracket inside a C# element, when this occurs a
single whitespace must all the time become before An opening curly bracket,
nevertheless, a single whitespace must be followed by An opening curly bracket in two
conditions: if it is the first character on the line, or when an opening parenthesis is
followed by An opening curly bracket, and in this suitcase there shouldn’t be space
between the parenthesis and the curly bracket. A space must be always preceded by an
opening curly bracket, but if an opening curly bracket is the last character on the line, a

space must not be preceded by an opening curly bracket.

The warning “A closing curly bracket within a C# element is not spaced
correctly.” is resulted from a wrong spacing around a closing curly bracket, when this
occurs a singular space must all the time be preceded by a closing curly bracket;
however, a space must not be preceded by a closing curly bracket if and only if a
closing curly bracket is the last character on the line, or if a comma, a semicolon, or a

closing parenthesis is preceded by a closing curly bracket.

The warning “Invalid spacing around the closing attribute bracket.” is resulted
from a wrong space around a closing attribute bracket. If the bracket is the first

character on the line, a space must be followed by a closing attribute bracket.

The warning “Invalid spacing around the negative sign” is resulted from a
wrong space around a negative sign. If a negative sign is the first character on the line
preceded by an opening square bracket, or a parenthesis, a single space must not all the

time be followed by a negative sign.

32

www.manaraa.com

The warning “Tabs are not allowed. Use spaces instead” is resulted from
consisting of a tab character in the code. Based on the editor that are used to display the
code, the extent of the tab character can be alternated, and as a result for that Tabs have
not to be used inside C# code, and this is one of the reasons that can cause spacing and
indexing of the code differ from the original intention of the developers, and in some
cases the reader may be seen the code difficult. Intended for these reasons Tabs should
not be used and are not permitted, and four spaces should be contained in every
indentation level. This will pledge that the code appears similar, and no affair which

editor is being used in order to display the code.

The warning “The comment must start with a single space” is resulted from not
started a single-line comment in a C# code file with a single space, and at what time a
single-line comment does not begin with a single space, the contravention of this rules

happen. For example:

private void Method1()

{
//for WPF Dispatcher

/I for WPF Dispatcher

}

The comments should start with a single space after the forward slashes:

private void Method1()
{
/Ifor WPF Dispatcher
//for WPF Dispatcher
}

33

Ol LAC U Zyl_ﬂbl

www.manaraa.com

Exclusion to this rule occurs when the comment is being used to comment out a line of
the code program. In this case, the space can be deleted if the comment starts with four

forward slashes to denote out-commented code. Such as:

private void Method1()

{
/l//int x = 2;

/l//return x;

The warning “Invalid spacing around the negative sign” is resulted from an
incorrect space around an operator inside a C# code file, these operators kinds have to
be cuddled by a single space on one of the sides: arithmetic operators, relational
operator, logical operators, lambda operators, conditional operators, colons, assignment
operators, and shift operators. For example:

(Filename,-1,null,null,0)

The warning “The documentation header line must start with a single space” is
caused when a code line within a documentation header does not begin with a single
space. For example:

//loop through all connected chatters and invoke their
The header lines should start with a space after the three leading slashes:

/// 1oop through all connected chatters and invoke their

34

www.manaraa.com

= Readability Rules

These types of Rules are used to guarantee that the code is readable and well-

formatted. Table 3.2 shows examples of readability rules.

Table3.2: Readability rules and examples

Warnings

Example of code

Calls to members from a base class should not

begin with ‘base.’

return base.Channel.BeginJoin(name, callback,

asyncState)

Prefix local calls with this

AbortProxy()

The code contains an extra semicolon

}s

A line may only contain a single statement

catch (TimeoutException) { }

A comment may not be placed within the | else// small flake
bracketed statement {
All method parameters must be placed on the | (Settings.Option.LogFileName,
same line
FileMode.Append)
The comment is empty. Add text to the | //
comment or remove it
Use the built-in type alias 'int' rather than Int32 | Int32[] baudRates

or System.Int32.

nn

Use string. Empty rather than

(titleAttribute.Title I="")

The warning “A comment may not be placed within the bracketed statement” is

caused when a C# line code includes a comment between the opening curly bracket and

the declaration of the statement. For example:

else // small flake
{

35

Ol LAC U Zyl_ilsl

www.manaraa.com

The comment can be placed or within the body of the block:
else

{
// small flake

Or can be placed above the statement:

// small flake
else

{

The warning “A line may only contain a single statement” is caused when a
single line Within a C# code contains more than one statement. For example:
catch (TimeoutException) { }

So that, each statement must begin on a new line.

The warning “The code contains an extra semicolon” is caused when The C#
code contains an additional semicolon. For example:
¥

This results in an empty statement in the code.

The warning “Calls to members from a base class should not begin with ‘base.’
” is caused when a call to a class member (functions) from an inherited class (base
class) starts with ‘base.’, furthermore the local class does not include an implementation
or override of the member (function). For example:

return base.Channel.BeginJoin(name, callback, asyncState)

The warning “Prefix local calls with this” is resulted when a call to an instance
member of a child class or a parent class that is involved in a C# code doesn't start with
'this'. Elimination to this rule occurs at the time there is a local (child) take priority over

the parent class element, and the code means to identify the parent class element

36

www.manaraa.com

directly, avoiding the local (child) priority over the parent class element. In this

situation the call can be beginning with ‘base.’ rather than ‘this.’.

The warning “All method parameters must be placed on the same line” is caused when
the parameters to a C# declaration or indexer or method call each on a separate line or
are not all on the same line. For example:

(Settings.Option.LogFileName,
FileMode.Append)

The parameters must all be placed on the same line:

(Settings.Option.LogFileName,FileMode.Append)

The warning “The comment is empty. Add text to the comment or remove it” is
caused when the C# code includes a C# comment which does not contain any comment

text.

1"

The warning “Use string.Empty rather than is caused when the C# code
contains a hard-coded empty string. For example:

(titleAttribute. Title !="")

This will cause an empty string was embedded into the compiled code by the compiler.
So that rather than using an empty string, use the static string.Empty field to represent

it, like this:

(titleAttribute. Title != string. Empty)

The warning “Use the built-in type alias 'int' rather than Int32 or System.Int32.”
is caused when the code uses one of the basic C# types anywhere in the code, but does
not use the built-in alias for the type. For example:

Int32[] baudRates

37

www.manaraa.com

Rather than using the fully-qualified type name, the alias for this type should always be
used:

int[] baudRates

= QOrdering Rules

These types of Rules are used to apply a standard ordering scheme for code

program contents. Table 3.3 shows ordering rules.

Table3.3: Ordering rules
Warnings

All using directives must be placed inside of

the namespace

All methods must be placed after all fields

All private fields must be placed after all
public fields

All constant must be placed before all non-

constant

Using directives must be sorted alphabetically

by the namespaces

The warning “Using directives must be classified alphabetically through the
namespaces” is happened at the time the used of orders in the file of a C# program are
alphabetically not prepared. Organizing the used orders alphabetically has the ability to

make the code easier to read and cleaner.

The warning “All constant must be placed before all non-constant” is caused

when a constant field is placed below a non-constant field. Non-Constants fields must

be placed below constants fields.

Ol LAC U Zyl_ﬂbl

38

www.manaraa.com

The warning “A get accessor appears after a set accessor” is resulted from the
appearance of a set accessor before A get accessor inside indexer or a property. An
infringement of this rule happens when a set accessor is located before a get accessor

inside indexer or a property.

The warning “All using directives must be placed inside the namespace” is
resulted when a C# using directive or a using-alias directive comes into view outside the
elements of namespace; if not the C# code involve any elements of a namespace.

There are slight dissimilarities among insertion using directives outside of the
namespace, rather than inside the elements of a namespace, including:

1. Placing the wusing directives within the namespace removes compiler
embarrassment between contradicting types.
2. When various namespaces are placed within a single file, placing using directives

within the namespace elements fields aliases and references.

= Naming Rules

These types of Rules are used to enforce naming requirements for types,

members and variables. Table 3.4 shows examples of naming rules.

Table3.4: Naming rules and examples

Warnings Example of code

method names begin with an upper-case letter: | private void buttonl Click(object sender,

button1_Click EventArgs e)

The variable name 'iCount' begins with a prefix that | int iCount

looks like Hungarian notation

Variable names must start with a lower-case letter (string Section, string Key)

Public and internal fields must start with an upper- | public string path

39

www.manaraa.com

case letter

Field names must not start with an underscore SerialPort _serialPort

The warning “Public and internal fields must start with an upper-case letter” is
caused when public or internal field name in C# program does start with a lower
character. If the variable field or name is intended to exchange the name of an item
connected with Win32 or COM, and therefore need to begin with a character of
lowercase, rest the field or variable inside a particular NativeMethods class. A
NativeMethods class is any class which contains a name ending in NativeMethods, and
is intended as a placeholder for Win32 or COM wrappers. StyleCop will ignore this
infringement if the item is set inside a NativeMethods class. For example:

public string path
this public field must start with an upper-case letter , like this :

public string Path

The warning “Variable names must start with a lower-case letter” is resulted
when the name of a field in C# or variable does not begin in a character with a lower-
case. On the other side, non-private read-only and static read-only fields have all the
time to start in a character with an uppercase, at the same time as private read-only
fields have to start in a character with a lowercase. In addition, internal or public fields
have all the time to start in character with an uppercase. For example:
(string Section, string Key)
variable names (Section, Key) must begin with a lowercase character, like this:

(string section, string key)

40

www.manaraa.com

The warning “Field names must not start with an underscore” is caused when a
field name in C# starts with an under strike. By default, StyleCop disallows the usage of
m_, underscores, etc. For example:

SerialPort _serialPort
field names must not begin with an under strike, like this:

SerialPort serialPort

The warning “The variable name 'iCount' begins with a prefix that looks like
Hungarian notation” is resulted when the name of a field or variable in C# code operates
Hungarian notation. The usage of Hungarian notation has been predominant in C++
code; nevertheless the inclination in C# is to use more denominative, longer indication
for variables, which are not based on the type of the variable but describe the reasons of
using variable.

In addition, new source code editors such as Visual Studio make it easier to identify
kind information for a field or variable, by hovering the mouse pointer over the variable

name. This minimizes the requirement for Hungarian notation.

StyleCop presumes that a variable name that starts with one or two lowercase
characters followed by an uppercase character is making utilization of Hungarian
notation. It is probable to declare specific prefixes as legal, in which situation they will
be disregarded. Such as a variable which has name “onExecute” will seem to StyleCop
to be utilizing Hungarian notation, when in fact it is not. So, the on prefix should be

gestured as an acceptable prefix.

The warning “method names begin with an upper-case letter” is resulted when
the name of exact kinds of a C# code component does not begin in character with an

uppercase. These kinds of components are supposed to use character with an uppercase

41

www.manaraa.com

as the initial character of the component name: enums, structs, delegates, namespaces,
properties, classes, events, and methods.

In addition, any field which is marked with the const attribute, public, or internal should
start with an uppercase character. Read-only Non-private Fields must also be named

utilizing an uppercase character.

» Maintainability Rules

These types of Rules are used to improve code maintainability. Table 3.5 shows

examples of maintainability rules.

Table3.5: Maintainability rules and examples

Warnings Example of code
The line contains unnecessary parenthesis double percentFailed = (numErrorFiles /
numFilesProcessed)
The class must have an access modifier static class Program

Fields must be declared with private access. Use | public static string estimatingMessage

properties to expose fields

A C# code file contains more than one unique

class

The warning “The line contains unnecessary parenthesis” is caused when a C#
statement have parenthesis in which there is no need for them and are supposed to be
erased. It is probable in C# code to put parenthesis in the region of any kind of
expression, clause, or statement, and in many suitcases use of parenthesis that have the
ability to advance the readability of the C# code; however, the use of parenthesis in an
excessive way make it more difficult to maintain and read the code, and it may have the

contradictory result. For example, the following line of C# code contains unnecessary:

42

www.manaraa.com

double percentFailed = (numErrorFiles / numFilesProcessed)
The extra parenthesis can be deleted without affecting the readability of the code:

double percentFailed = numErrorFiles / numFilesProcessed

The warning “The class must have an access modifier” is caused When the
access modifier for the component of a C# code for instance a class has not been
identified in a clear way. In C# language the components are allowed to be identified
with no need for an access modifier (public, private). An access level will be
unexpectedly specified to the component of this situation by C#, depending on the type
of component. An access modifier is demanded for this rule to be identified in a clear
way for each component. This takes out the demands for the reader to make

assumptions about the program of C#, improving the readability of the C# code.

The warning “Fields must be declared with private access. Use properties to
expose fields” is caused when a field within a C# code class has a non-private access
modifier such as public. For example:

public static string estimatingMessage

The warning “A C# code file contains more than one unique class” is resulted
when the file of a C# program involve more than one single class. The class name in a
file is supposed to be replicated by the name of the file, and each class is supposed to be
placed in its own file in order to elevate the maintainability of long-term of the code. If
the other components are supported to the class or referred to the class. It is probable to
place other elements inside the same file the as enums as class, delegates, etc. moreover,
it is probable to place deferent sections - of the same fractional class - inside the same

file.

43

www.manaraa.com

= Layout Rules

These types of Rules are used to enforce code line spacing and layout. Table 3.6

shows layout rules.

Table3.6: Layout rules
Warnings

If a statement spans multiple lines, the closing curly

bracket must be placed on its own line

A statement containing curly brackets must not be

placed on a single line

The body of the if statement must be wrapped in

opening and closing curly brackets

The code must not contain multiple blank lines in a row

A closing curly bracket must not be preceded by a blank

line

Statements or elements wrapped in curly brackets must

be followed by a blank line

Adjacent elements must be separated by a blank line

The code file has blank lines at the end

The warning “The body of the “if statement” must to be wrapped in an opening
and closing curly brackets” is resulted when the opening and closing curly brackets for a
statement that are blocked has been missed. Some types of statements is might be
facultatively involved curly brackets like if, for, and while statements In C# language.
For example:

if (true)
return this.value;

44

Ol LAC U Zyl_ilsl

www.manaraa.com

This if-statement was written without curly brackets, although this is valid in C#,
StyleCop always needs the curly brackets to be written, to increase the maintainability
and readability of the C# code.
When the curly brackets are missed, it is probable to be an error in the code by writing
another statement within the if-statement block. For example:

if (true)

this.value = 2;
return this.value;

The warning “A closing curly bracket must not be preceded by a blank line” is
caused when a blank line precede a closing curly bracket within a C# expression,

element, or statement.

The warning “The code must not contain multiple blank lines in a row” is
resulted when a multiple blank lines are involved in the C# code in one row. Blank lines
are demanded by StyleCop in particular suitcases and they are prevented in other
suitcases in order to enhance the code readability, and as a result for that the readability

and recognition of unfamiliar code can be improved.

The warning “A statement containing curly brackets must not be placed on a
single line” is caused when a C# statement including closing and opening curly brackets

is written on a one line. For example:

public object Func()
{

lock (this) { return value; } }
The warning “If a statement spans multiple lines, the closing curly bracket must

be placed on its own line” is caused when the closing or opening curly bracket within a

C# expression, statement, or element is not located on its own line.

45

www.manaraa.com

The warning “Statements or elements wrapped in curly brackets must be
followed by a blank line” is caused when a closing curly bracket is not followed by a

blank line.

The warning “Adjacent elements must be separated by a blank line” is caused

when there is no blank line between two adjacent elements.

The warning “Adjacent the code file has blank lines at the end” is caused when
there are blank lines are at the end of the code. StyleCop needs no blank lines at the end

of codes, to improve the layout of the code.

= Documentation Rules

These types of Rules are used to verify the formatting and the content of C#

code documentation. Table 3.7 shows documentation rules.

Table3.7: Documentation rules
Warnings

A C# code element is missing a documentation header

The partial class element must have a documentation header containing

either a summary tag or a content tag

The enumeration sub-item must have a documentation header

The Xml within a C# element’s document header is badly formed

A C# method, constructor, delegate or indexer element is missing

documentation for one or more of its parameters

The documentation describing the parameters to a C# method,
constructor, delegate or indexer element does not match the actual

parameters on the element

A <param> tag within a C# element’s documentation header is empty

The documentation text within a C# property’s <summary> tag does not

46

www.manaraa.com

match the accessors within the property

A section of the Xml header documentation for a C# element does not

contain any whitespace between words

A C# code file is missing a standard file header

The Xml documentation header for a C# constructor does not contain the

appropriate summary text

A section within the Xml documentation header for a C# element contains

blank lines

The warning “The Xml within a C# element’s document header is shaped in a
bad way” is resulted when the Xml inside the file header of a C# component cannot be
analyzed and it is formed in a bad way. This may occur if the Xml involves characters
that are invalid or if a closing tag is being lost by an Xml node. Throughout the use of
Xml documentation headers, C# syntax introduces a method for inserting

documentation for classes and components immediately into the C# code.

The warning “The partial class element must have a documentation header
containing either a summary tag or a content tag” is caused when the header is empty,

or if a C# partial element is entirely missing a documentation header.

3.3.1.2 JustCode Tool

* Naming Rules

There are some warnings will be considered in this section, the first one is
related to naming reasons, is occur when a namespace name matches the name of the

project, while the name of the project is “ChatService” but the name of the namespace is

47

www.manaraa.com

“Chatters”, so that to avoid this type of warning should be converted the namespace

name to “ChatService”.

Another type of warning- related to naming reasons - is occur when an interface
name does not resemble the file name, to avoid this type of warning should be changed

the file name to be similar to interface name.

According to the naming convention, if the access modifier is “public” then the
first letter should be capital. A violation of this rule occurs when the field name do not
begin with an upper-case letter, to solve it should be capitalized the first letter, and if the
access modifier is “private” then the first letter of the field name should be lowercase
and the first letter of the method name should be uppercase. A violation of this rule
occurs when the field name does not begin with lowercase letter. These kinds of
elements should use an uppercase character as the first character of the element name:

public, namespaces, internal, classes, enums, and const structs.

* Readability Rules

There is a warning occurs when there is an extra semicolon within the code, this
results in an empty statement in the code. To fix a transgression of this rule, the

unneeded semicolon should be removed.

= Using Rules

There is also a warning occurs when there is a directive within the file which
was never used by any element in the project, such as collection, generic directive.
Another warning occurs when there is a variable, method, parameter has been declared,
and however, they are not used in the program. Also there is a warning occurs when

there is a field used however it is not initialized in the program.

48

www.manaraa.com

3.3.1.3 Fxcop Tool

* Naming Rules

The warning “Identifiers should be spelled correctly” is caused when an
Identifier is not understood by the “Microsoft spelling checker library”. In other words,
the personal words that make an identifier are abbreviated or are not spelled correctly.
This rule analyzes the identifier into parts and investigates the spelling of each part. The

parsing algorithm depends on the following rules:

o Upper-case characters begin a new token. Such as, MyNamelsJoe divides
into "My", "Name", "Is", "Joe".

o For multiple Upper-case characters, the last Upper-case characters begin a
new token. Such as, GUIEditor divides into “GUI", "Editor".

o Trailing and Leading apostrophes are deleted. Such as, 'sender' divides into
“sender".

o Underscores mean the end of a token and are deleted. Such as, Hello world
divides into “Hello", "world".

e Embedded ampersands are deleted. Such as, for&mat divides into "format".

The warning “Resource strings should be spelled correctly” is caused when a
resource string includes one or more words that are not understood by the “Microsoft
spelling checker library”. This rule divides the resource string into terms, dividing
compound words, and investigates the spelling of each term/token. In other words, the
personal words that make a resource string should be spelled rightly, and should not be

abbreviated.

49

www.manaraa.com

» Performance Rules

The warning “Avoid unused private fields” is caused when a private field in the
program exists but is not utilized by any code track. For example, declaring the field

'PluginFamily. policy', but it are never used or are only ever assigned to.

The warning “Initialize reference type static fields inline” is caused when a
reference type states an explicit static constructor. When a type states a frank static
constructor, the Just-In-Time (JIT) compiler adds a test to each instance constructor and
static method of the type to make certain that the static constructor was already called.
Static initialization is elicited when an instance of the type is made or when any static
member is accessed. But, static initialization is not elicited if a variable is declared of

the type but do not utilize it.

The warning “Properties should not return arrays” is caused when a protected or
public property in a public type returns an array. An Array returned by protected or
public properties - even if the property is read-only - are not write-protected. To save

the array tamper-proof, a copy of the array must be returned by the property.

The warning “Remove unused locals” is caused when a local variable is declared
within a method but the method does not utilize the variable except perhaps as the
recipient of an assignment statement. For dissection by this rule, the analyzed assembly
must be constructed with debugging information and the associated program database

PDB file must be existed.

50

www.manaraa.com

3.3.2 A Comparison Between The Tools

After carrying out the analysis on the data which generated when 40 project
codes — every project code contain at least 10 files - were applied on these tools
(StyleCop, JustCode, FxCop), and after collect the results in a dataset, then each XSL
file contains at least 500 warnings, after the analysis, it is concluded that the StyleCop
tool has seven types of warnings: layout, documentation, ordering, naming,
readability, spacing, and maintainability. On the other hand, the JustCode tool has three
types of warnings: naming, usage, and readability. And FxCop has many types of

warnings, but 3 types were considered on this study: naming, performance, and usage.

Firstly, we will compare between the results, this comparison related to the types
of warnings, according to the naming warning, if we look at the table 5 and compare the
results to the naming warning —in JustCode and FxCop tools - it is concluded that
JustCode and StyleCop tools both contain the same warning “name does not match the
naming convention” this according to the JustCode tool, but StyleCop there are many
rules but all of them considered as one rule in just code tool. As for FxCop, this rule

does not exist.

On the other hand, there are many differences between these tools such as, there
is a rule in StyleCop rule that say, “field names must not start with an underscore”, and
this rule does not exist in JustCode and FxCop. As for JustCode, the first three rules are
similar, and they say that the element name within C# code does not match the files and

project name, but as for FxCop the first two rules are different from other tools results.

51

www.manaraa.com

As for the usage rule, this rule exists only in JustCode and FxCop tools but does
not exist in StyleCop tool, in JustCode tool; there are some rules such as:
1- Field is only assigned.
2- Variable is only assigned.
3- Unused method.
4- Unused parameter.
These rules are similar to a rule in FxCop tool, “review unused parameter’’.
As for the difference between the JustCode and FxCop tools, in JustCode there
are two rules:

1- This cast is not required.

2- Field is never assigned.

In FxCop tool, the rules are:

1- Do not call overridable method in constructors.
2- Do not ignore method results.

As for readability rule, there is a similarity between StyleCop and JustCode, in
the rule that say “the code contains an extra semicolon’’ this rule in StyleCop tool and
in “this empty statement may be not intended here” this rule in JustCode tool. Also
there is a rule exists in JustCode tool but not in StyleCop that say “field can be made
read only”, however, FxCop tool does not contain readability rules. And there are 5
rules exist in StyleCop but not exist in JustCode.

As for performance rules, this rules exist in FxCop tool but does not exists in
both JustCode and StyleCop tools. Also there are rules exist in StyleCop tool but does
not exists in JustCode and FxCop tools, they are:

1- Spacing.
2- Ordering.
3- Maintainability.

52

www.manaraa.com

4- Layout.

5- Documentation.

53

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER FOUR

RESEARCH GOALS AND APPROACHES

In this chapter, we have described the major goals specified to guide the
experiments. We have also described research approaches or steps taken in trying to test

our proposed research approach.

As we have mentioned in previous chapter earlier, this project focuses on
evaluating source code metric tools, based on their strengths and weaknesses.
Particularly, we focused on two major SCA tools: MS StyleCop and JustCode. Both are
popular and evaluate the different classes of warning we described earlier. Figure 4.1

summarizes the research procedures.

54

www.manaraa.com

Collect sorce codes
ey test

Coopeate results
from different

SCA tonls I

SCA tools differences SCA tools similart C4 took inconsiste

ild & traceshility e nbance ment fatures

Hﬁi SC A tool based on the enharceme

Dieseelop SCLA tool o autnrrati
orzaendation chazge on the source

Figure 4.1: Methodology phases

55

www.manaraa.com

The methodology includes the following six main steps:

In initial assessment of these tools, we noticed some differences in the results or the
warnings that come from each tool for the same source code. This was one of the

first problems triggered that we decided to investigate thoroughly.

We have developed our own SCA tool. We hope that this tool can overcome some
of the weaknesses of the two evaluated tools: StyleCop and JustCode. We may not
be able to solve all open issues, especially as we noticed that some issues are open
not because the tools cannot solve them but because they are also open in the
software development community. For example, in defining relations and their
limits: parent-child, relations- by extensions or transitive relations, visibility issues.

This was a second major task that will be evaluated in this thesis.

We also noticed that the same tool may give different number of warnings for the
same source code if tested or run more than one time. Such inconsistency of results
need to be evaluated and the kind of warnings that may vary from one experiment to
another given the same tool and tested source code. This was a third major task that

will be evaluated in this thesis.

Another important aspect that we have focused in our developed tool is the
automatic implementation of suggested warnings and their solutions. Some SCA
tools do not propose solutions. Some tools propose solutions with some problems.
Tools may not have the ability to apply and evaluate applying proposed solutions for
the warnings. We will tackle this issue in our developed tool, by proposing and

applying warning possible solutions.

Of course, there is a step of evaluation for our own tool using different class files

and possible codes.

56

www.manaraa.com

6. We have compared the developed tool with StylCop and Just code.

4.1 Differences in the Results that come from each Tool for the Same Source Code
As mentioned earlier, the major goal in this section is to compare and conduct an
assessment of selected SCA tools. In order to do this, the experimental study is
performed with two open-source code-projects, implemented in C#. Table 4.1 shows an
overview of the evaluated source codes. The first code-project is ‘‘Chatters’’ that
contains 15 files and the total number of LOC is 2506 lines. On the other hand,

“Design” code-project contains 23 files, and the total number of LOC is 2702 lines.

Table 4.1: An overview of the projects

Name LOC Files
Chatters 2506 15
Design 2702 23

After applying these SCA tools on the selected open-source code-projects, some
differences were observed in the warnings that were generated from each tool for the
same code-project. This was one of the issues that we determined to investigate
thoroughly. Firstly, the “Chatters” project was resolved. According to StyleCop tool, the
total number of warnings was generated is 555. However, according to JustCode tool,
the total number of warnings was generated is only 103, as for, the “Design” project.
According to StyleCop tool, the total number of warnings was generated equal 921.
However, according to JustCode tool, the total number of warnings was generated is

only 95.

As for, the distribution of warnings on the class warnings; this distribution is

different from one project to another, this issue was expected, Table 4.2 and Table 4.3

57

www.manaraa.com

show this distribution, and it is observed that, in Table 4.3 no readability warning was

generated.
Table 4.2: Distribution the Chatters warnings on classes of warning
StyleCop Class Warnings Chatters Project JustCode Class Warnings
Naming 20 53 Naming
Readability 141 3 Readability
Maintainability 22 47 Usage
Spacing 58
Ordering 124
Layout 77
Documentation 112
Total 555 103
Table 4.3: Distribution the Design warnings on classes of warning
StyleCop Class Warnings Design Project JustCode Class Warnings
Naming 65 69 Naming
Readability 302 Readability
Maintainability 9 26 Usage
Spacing
Ordering 240
Layout 75
Documentation 230
Total 921 95

The results presented in the Table 4.2 and the Table 4.3 show the differences

between numbers of class warnings in each of SCA tools after these tools on different

Ol LAC U Zyl_ﬂbl

58

www.manaraa.com

code projects. In Table 4.2 show that the number of spacing warnings equal to 58, but

the number of spacing warning in the Table 4.3 equal to 0. From this result we return to

the code of Design Project and we found that the line was not any warning because it

did not achieve any of the rules of the spacing warnings.

The results presented in the Table 4.4 and the Table 4.5 show the similarities

and the differences respectively between the results that were generated from applying

the two SCA tools on the two code-projects. Table 4.4 shows the results were generated

from applying the two SCA tools on Chatters project.

Table 4.4: Result from applying SCA tools on Chatters project

Example Code Chatters

JustCode Recommendation

StyleCop Recommendation

public MessageType
msgType

public MessageType
MsgType

public MessageType
MsgType

private string imageURL

private string imageUTrl

void
IblExit MouseDown

void IblExitMouseDown

namespace Chatters

namespace ChatService

public enum
CallBackType

Move Type to Another File

private static Object
syncObj

private static readonly
Object syncObj

using
System.Collections;

Remove unused using

Receive(e.person.Name,
e.message);

this.Receive(e.person.Name,
e.message);

this.Receive(e.person.Name,
e.message);

nn,

public string message="";

nn,

public string message = "";

class Program

public class Program

public Person person;

private Person person;

59

www.manaraa.com

Table 4.5 shows the results were generated from applying Design project.

Table 4.5: Result from applying SCA tools on Design project

Example Code Design

JustCode Recommendation

StyleCop Recommendation

void okButton Click

void OkButtonClick

void OkButton Click

private bool _accepted

private bool accepted

private bool accepted

interface Searchable

interface ISearchable

interface [Searchable

void webBrowserl

public void webBrowser1

SetBackgroundColor(

BackColor)

SetBackgroundColor(this.

BackColor)

interface SearchableBro

interface SearchDialog

partial class SearchDialog

public partial class
SearchDialog

As observed from the results, as for the “Naming Warning”, the two used SCA

tools have some rules, such as “public field” name must start with a capital letter. In

addition, underscore must be removed from field names, as for the function name, the

tools presumes that it must start with a capital letter. But the difference between them,

that JustCode disallows the underscores, on the other hand, StyleCop allows them. For

example as shown in Table 4.5:

void okButton_Click

As for JustCode recommendation (underscore was removed, the first letter was

capitalized):

void OkButtonClick

And as for StyleCop Recommendation (Underscore was not removed, the first letter

was capitalized):

void OkButton_Click.

60

www.manaraa.com

As for changing the type name, such as interface and namespace, JustCode
requires to change the namespace name — or any type name such as class, struct,
interface and enumeration — to match file name or folder directory name, or transfer it
to a file that commensurate with it, such as “Chatters” namespace, should be converted
to “ChatService”. As shown in Table 4.4:
namespace Chatters
As for JustCode Recommendation:
namespace ChatService.

As for using warning, this warning does not exist in the StyleCop tool, but in
JustCode, this rules requires deleting unused using system, such as
using System.Collections;

It was not used by any element in the project, so as for JustCode recommendation, it

should be removed.

As for readability rules, private fields — according only to JustCode
recommendation — must be followed by readonly keyword, as example shows in
Table 4.4:
private static Object syncObj
As for JustCode recommendation (as shown below, it was added after static keyword
directly):

private static readonly Object syncObj

In the existence of the access modifiers to each element and the field must be
private, this rule is found only in StyleCop, and there are some examples in the both
Tables, such as shown in Table 4.4:

class Program

61

www.manaraa.com

As for StyleCop recommendation:

public class Program

Another example also shown in Table 4.5:

partial class SearchDialog

As for StyleCop recommendation:

private Person person;

4.2 Weaknesses of the Two Evaluated Tools

There are some weaknesses of SCA tools such as: generating false positive
results, continuous inability to find configuration problems; because they are not
represented in the code, difficulty to confirm that an identified security problem is a
practical vulnerability. Many of SCA tools have difficulty analyzing source codes that
cannot be compiled, and many types of security weaknesses are very hard to locate

automatically, such as access control problems, authentication issues, etc.

The two SCA tools (JustCode, StyleCop) are applied on “MarsMission” project,
and then some warnings (rules) were observed that may be due to some expected errors.
As shown in table 4.6 and table 4.7 respectively, those show some of these warnings

and tools recommendations.

Table 4.6 shows the process of applying JustCode Recommendation, and what

are the results after applying this process.

62

Ol LAC U Zyl_ﬂbl

www.manaraa.com

Table 4.6: Example code MarsMission and JustCode recommendation

No. Example Code MarsMission JustCode Recommendation

1 | public int intWidth public int IntWidth

2 | struct udtWordImageLine Rename the file name to
udtWordImageLine

3 | struct udtChemSymbols Rename the file name to
udtChemSymbols

4 | Point ptRotateCopy; Field 'ptRotateCopy' is never
assigned

5 | using Mars_Mission;

As shown, JustCode recommends capitalizing the first letter in “intWidth” field
to be “IntWidth”, and so this capitalization process may cause an error, if there is
another variable or field has the same name “IntWidth”. In other words, C# language is
case-sensitive this mean that word “intWidth” is not the same as its first-capital
spelling, “IntWidth”. They are totally different identifiers. If there is already a field its
name is “IntWidth” in the code, and then the JustCode capitalizes the first letter in
“intWidth” field to be “IntWidth”, and then they will be two variables with the same

name.

As for the recommendations 2 and 3 in Table 4.6, JustCode recommends
renaming the file name that contains a structure to the structure name, but if the field

contains two structures, this causes an error or confusion.

As for the fourth, JustCode recommends initializing any declared field, but the
“ptRotateCopy” is an object, objects in C# can be declared and not necessary to be
initialized; because there is a default constructor to initialize the data members in the

classes. Thus this recommendation is not correct or accurate.

63

www.manaraa.com

The final recommendation in Table 4.7, JustCode recommends renaming all the

namespaces in the files to the solution or folder name which contains these files.

Table 4.7 shows some code-lines that could not be recognized or recommended

by StyleCop after applying StyleCop on “MarsMission” project.

Table 4.7: Example code MarsMission and StyleCop recommendation

Example Code MarsMission StyleCop Recommendation

public const string conMasterLimbName | No recommendation for the field, but the
StyleCop say the field must have a
private.

public const Int32 ULW_COLORKEY = | No recommendation for the field, but the

0x00000001; StyleCop say the field must have a
private.

public class classReport StyleCop cannot discover more than one
class

class No recommendation for the class, but the

classSetNumImagesPerQuarterRotation StyleCop say the element must have an
access modifier.

As mentioned above, StyleCop recommends converting all non-private fields to
private access modifier, however, the first row in the Table 4.7 shows an example; field

has public access modifier, and there is no recommendation for the field to be private.

As mentioned above, if there is more than one class in the same file, and this
class is not partial, then StyleCop will recommend that there is more than one class in

the same file, but it did not recommend it in this example.

And finally, there must be a recommendation when the access modifier for a C#
code element such as a class has not been explicitly defined. However, the example in

the Table 4.7, there is no recommendation for the class.

64

www.manaraa.com

It should be mentioned that are discovered in two ways, the first one is the
process of application of what was recommended by JustCode by using the same tool.
The second way is the process of comparing the result which is obtained from applying
the StyleCop tool on the project with the result which is acquired from applying our

own developed tool in the project.

4.3 Inconsistency Issue

This term refers to the result which is acquired from applying a specific SCA
tool on a project, must not be changed from time to time; in other words, if a specific
source code was applied many times on an SCA tool. Number of warnings should be

always the same.

On the other hand, the number of warnings -which is acquired from applying a
specific SCA tool on a project — must be equal the total number of warnings — which is
acquired from applying this tool on the files that consist this project. Another
Consistency issue is that, some SCA tools allow to alter the recommendations

automatically. However, these recommendations are incorrect in the tool warnings.

The first and second issues that were mentioned previously do not exist in
StyleCop tool. Figures 4.2 and 4.3 below show the differences between the results
which are obtained from applying a StyleCop tool on the same project many times.
Figures 4.2 shows the results which are obtained the first time, as evident in the Figure,

the number of generated warnings were 1374.

65

www.manaraa.com

ke

e i g, by e DVl S by S ——
[T T L L N[- - S e
|J.:-.¥. =S T S i wlidi,
i
H Apnbcipats B p—) =1 R S
]] 3 bt Lo L {] g
kit - o s ke
[o i o o
+ g et imageink|sang | jastorment_Lontipuraiion, |esCarrems Dprtigerwiissibip, 8, b0, wjreer, Talve) Copy(L
il sfabonge (v ulepPTILInRe, e Coef e et hemi] Lonond e il loe Enden | Linbor meteiuence, Sngle, BlipleySbin, of - o
[T Trrr— r— i £ pitutndlyem
' L]
Alckatiy = = o Lapale "o rpoetilestrrm gt llamme, Ertioedige it iominben, Lo4itng, Sogle, @ldligls 1 Beagdagania
' = wu, Cache|sd hepulilets, B eyt
. A chesllast 1
1 fp—
retern chagiriLbnfa; .
}) theinbg.cx .
E [rrrssy ey
o] Makrkor {0 T ramipe et & b
rvas ik =
0 ey |, 1758 W 11 g
[L] L Cobems Pt
& LI AL Ty e srmreststuce St matbs bog gt den | ey e et e et iy e, bty @ o st o e T e e L iaf i Ly Udemare:
B3 SKIED T b s e o i [i, 1 Pl il oo P o o o 1 ik bR 1 1 Wi e
T e e e o S P L sl ot 1 1 Vg Mo
B0 LAMETE T i e o, P i Tl el o P b il i 8 B o o Tl] 1 1 Ly Uy
B EE SGRINID Tk Dk b e Pl M il L0 iel]) Pl bl il M S 0 A g T Vi [s N] 1 (LT SN
& LEA SIREE Pl i e ey R B Samdier (sl i ool - By i vt bt o S g of P b vmplzepo iz 1 1 b Uz
1 LT3 SAIETE T b b i o P S Gl o e, i P bt 0 i el o P B o o e] 1 1 g M
§TH AL bt ety sl st e it D (b, mhach o e b b i I B i il i m 1 [FRSTTR
L P WAL b s et v e s Swwy it whact e s by e i o o e tanallanm 1 T | Ml e

o &
Figure 4.2: Generated warnings from StyleCop tool

After applying this source project on StyleCop many times, the number of
warnings becomes 1002. Figure 4.3 shows a reason that may lead to the difference
between the numbers of the warnings; StyleCop repeated the same warnings many

times, such as the example below:

& 29 541602: The enumeration sub-itern must have a documentation header.

a

& 31 541602: The enumeration sub-item must have a documentation header.

it cann_dimguratine, |maeee Ll gurat iastben, 8, 8, Shiee, Tilss) tepyi
27 St L e it g Al] i rutprsre: ding by Biapiloyiiivn., 8

bt et Ul Rt b, RSIT e Ui laninen, (SAibag, asyhi. SiSTAlS
s, et T g Ty T
i bten 14

R L e

o
Db | [V g |

Fe— - b s Pt =
B LLLEIE T b e e s i e e el s bt e e e g, [i [Epr—
T R e e e e] prae— i i b
BORE WAL i s b s B B S i il P bt b i g g o B Crae 1 1 b e
LT SAIL g b et et wod b i By chywbs b e Lo by i o o g G (] ' e
&R A Ly b ety et et g i e sy e wn s e b e e e re— = 1 i e
BRI b L e e, e e g SR oy hanhy Feh W R A e o Es— = i [r
B LRI Pl it s et 0 e i i ey R i e s S Bl [—— i i i s
I Ll e L st i i i
BT RRAML iy s ok S et by € e b et 1 ' bagr b

Figure 4.3: Repeated warnings from StyleCop tool

66

www.manaraa.com

Ol LAC U Zyl_ﬂbl

The second issue of StyleCop is the number of warnings -which are acquired
from applying them on the project — is not equal to the total number of warnings —

which is acquired from applying it on the files that consist this project.

The third inconsistency issue is related to JustCode, JustCode can alter the
original code, to apply its recommendations, which is done by pressing on
recommendation, after it is pressed, the user can then see the source code, and two
options will be given. Making adjustments and changes will be then allowed. However,
the problem is that options will be given to make alteration on a code line. This
alteration is given in JustCode recommendations incorrect. In other words, make
alteration on a code line is allowed, but this line was listed in the JustCode warnings list
but incorrect. Figure 4.4 shows the inconsistency between the recommendations and

alterations.

B o, e, T g Jam. Do . e g

RS e e R = e S = {8 -7 e BT
e e s e
[N T——
.'.-m-uaun_ -.;‘:.-___ = - -J:J]:I!LI:M
T T] 3 Sesten Van Uesaan') pusysy
- T s e
:I.w [ppertd Lok Saguewttal, Wuct s 4] :::.:
l 3 Cadnbasign
i o Rnris
e P CODE MSFACTON | RAMESATE 4 braiagens
i el B Wi’ ey
& ity e So (et
e T & o ety o el Bk
o R Tl
Ditem | M -
e
P e g ey | P 00
b 0% it Pt i M TH o =
B 8 Y wom v e oy ey oo gt v Dol L L o
B 08 g iy s Do g s, Roppitivs g L Faaitug 2 reTr— -u o
& 0 bw o w it Sy e et gl veew sl e s chuiloeie s ey e E, L] it
B0 Vi s e o e e, et vy e a1 [TETe e =]
S L b L rerr—————————— fe— Mo e W o
B ¥ N i sl S By st nevetee, lagpeted ey S0 iy bt 1 Wy U |30 = (]
b e Setac et inlwan Mo e (1) =]
A OF imn e e i o ey e, et v il o r— ToSpT— " o

oo |y~ ¥ .

Figure 4.4: Inconsistency between the JustCode recommendations and alterations

67

oL fyl_llsl

www.manaraa.com

4.4 Tool Implementation
This section will describe the process following to develop our own SCA tool.
This will be presented in three major activities as typical software developed process:

requirements and implementation.

4.4.1 Requirements

The features were achieved by our SCA tool:

1- Detecting warnings and give the recommendation.

2- Applying the automatic update and changes on the code.

As for the first feature in details, this tool is used to discover the warnings which

are classified or related to four categories; maintainability, naming, ordering, layout.

As for the process of the application of the recommendations on the code; in
other words, if there is any recommendation in some code line, after pressing on
alteration button then the alteration will be applied on the code specifically for the

alteration related to two categories; maintainability, naming.

4.4.2 Implementation

* Button maintainability:

Pseudo code:
o WHILE not End Of File (EOF)
= [F the file extension is .cs
e Read a code line
e Split the line to list of strings
e Check the line is not contain a comment
e Extract the next word from the line

e Match the list of string with the rule

68

www.manaraa.com

e Show the updated code in text2
= ENDIF
o ENDWHILE

= Naming Button:

Pseudo code:
o WHILE not End Of File (EOF)
e Read a code line
e Check for “{” and “}” in the line
e Split the line to list of strings
e Match the list of string with the rule
e Match the elements of the generated list with C#
keywords, such as, class, namespace, and others
e Check of condition to match rules
e Print the warnings based on the checked condition and the
condition in textl
e Update the code to Match the detected warnings, and put
the updated code in text2
o ENDWHILE

= Ordering Button:

Pseudo code:

o WHILE not End Of File (EOF)
e Read a code line
e Check for “{” and “}” in the line
e Split the line to list of strings
e Match the list of string with the rule
e Match the elements of the generated list with C#

keywords, such as , class , namespace , and others

e Check of condition to match rules
e Print the warnings based on the checked condition and the

condition in textl

69

www.manaraa.com

o ENDWHILE

= Layout Button:

Pseudo code:
o WHILE not End Of File (EOF)

e Read a code line

e Check for “{” and “}” in the line

e Split the line to list of strings

e Match the list of string with the rule

e Match the elements of the generated list with C#
keywords, such as class, namespace, and others

e Check of condition to match rules

e Print the warnings based on the checked condition and the
condition in textl

o ENDWHILE

70

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER FIVE

EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter and based on the developed SCA tool and the previously
described an approach, an experiment will be conducted to evaluate the developed SCA

tool.

For each one of the projects of Software Under Test (SUT), the warnings based
on the SCA tool have been extracted. Those warnings are according to the classes or
categories mentioned, in section 4.4. Forty project codes were utilized for this
experimental study. The sizes of tested projects vary based on the number of classes or

files in each project or software.

5.1 SCA Tool Warnings Extraction

This section is divided into three subsections. In the first subsection the
maintainability warnings will be extracted. In the second subsection the naming
warnings will be extracted. Finally in the third subsection the ordering warnings will be

extracted.

Table 5.1 shows all rules of warnings and examples, which related to the four

kinds mentioned earlier.

71

www.manaraa.com

Table 5.1: All rules of warnings and description

Category

Name of rule

Description

Maintainability Rules

Access Modifier Must Be Declared

The class must have an access modifier.

Fields Must Be Private

Fields must be declared with private access.
Use properties to expose fields.

File May Only Contain A Single
Class

A C# document may only contain a single
class at the root level unless all of the classes
are partial and are of the same type.

File May Only Contain A Single
Namespace

A C# code file contains more than one
namespace.

Naming Rules

Field Names Must Not Contain
Underscore

Field names must not contain underscore
m_cfgFilename.

Field Names Must Not Begin With
Underscore

Field name must not begin with an

underscore: _cancel.

Accessible Fields Must Begin With
Upper Case Letter

Public, internal, and const field names must
start ~ with an upper-case letter:
intStandardCaveCellDepth.

Interface Names Must Begin With
I

The name of interface does not begin with
the capital letter I SearchableBrowser.

Element Must Begin With Upper
Case Letter

Method names begin with an upper-case
letter: convertButton_Click.

Field Names Must Begin With
Lower Case Letter

The name of a field or variable in C# does
not begin with a lower-case letter.

72

www.manaraa.com

Using directives System must be placed
Using Directives Must Be Placed within a namespace.
@ Within Namespace
2
S
[~ All constant and readonly private fields must
a0 Constants Must Appear Before be placed before all non-constants, non-
£ Fields readonly private fields.
R
S
B The access modifier internal must come after
o Protected Must Come Before the protected keyword in the -element
Internal declaration.

If a statement spans multiple lines, the
w Curly Brackets For Multi Line closing curly bracket must be placed on its
'E' Statements Must Not Share Line own line.
=4
ﬁ . . .
g A C# statement containing opening and
;} Statement Must Not Be On A closing curly brackets is written completely
] Single Line on a single line.

5.1.1 Warnings Extraction

The maintainability warnings were extracted using our own SCA tool. Several
warning types were extracted. Extracted maintainability warnings are divided into many

kinds. They include the following types as examples:

1- The elements of C# code must have an access modifier.

2

The field must be declared with private access modifier.

3- The file must contain only one class.

4

The file must contain only one namespace.

73

Ol LAC U Zyl_ﬂbl

www.manaraa.com

As for the first warning in the list above “The elements of C# code must have an
access modifier”, the elements were extracted. Those are: class, interface, enum, struct,

constructor, field, method, and property.

Table 5.2 shows some examples of maintainability warnings, which related to

the four kinds mentioned earlier.

Table 5.2: Maintainability warnings extraction examples

Maintainability Warning Project File Line
The class must have an access Clipz Program.cs 9
modifier.
The method must have an access Clipz Program.cs 15
modifier.

The property must have an access | Calculator [MainWindow.xaml.cs | 29
modifier.

The struct must have an access | Calculator GraphForm.xaml.cs | 271
modifier.

The Enumeration must have an access | Mars Mission classAstronaut.cs 13
modifier
The field must have an access Termie CommPort.cs 29
modifier

A C# document may only contain a
single class at the root level unless all

. Mars Mission classSprite.cs 1690
of the classes are partial and are of the P
same type.
Fields must be declared with private
access. Use properties to expose | Mars Mission classControls.cs 399

fields.

After applying the SCA warning modification on our own developed tool on the
project that contain 9 files, it is found that the number of maintainability warnings are

total of 315 on all 9 files.

74

www.manaraa.com

As for the first warning in the Table above, “The class must have an access
modifier” warning was found in the Clipz project, in “Program.cs” file at line 9. The
line code is:
static class Program

Notice that, this line code needs an access modifier as will be explained later.

As for the second warning in the Table above, “The method must have an access
modifier.” warning was found in the Clipz project, in “Program.cs” file at line 15. The
line code is:

static void main()

As for the third warning in the Table above, “The property must have an access
modifier.” warning was found in the Calculator project, in “MainWindow.xaml.cs” file
at line 29. The line code is:

string CFgfiename

As for the fourth warning in the Table above, “The struct must have an access
modifier.” warning was found in the Calculator project, in “GraphForm.xaml.cs” file at
line 271. The line code is:

struct Sample

As for the fifth warning in the Table above, “The Enumeration must have an
access modifier” warning was found in the Mars Mission project, in “classAstronaut.cs”
file at line 13. The line code is:

enum enuAstranautProficiencies

75

Ol LAC U Zyl_ilsl

www.manaraa.com

As an example for the sixth warning in the Table above, “The field must have an
access modifier” warning was found in the Termie project, in “CommPort.cs” file at
line 29. The line code is:

SerialPort _serialPort;

As an example for the seventh warning in the Table above, “A C# document
may only contain a single class at the root level unless all of the classes are partial and
are of the same type.” warning was found in the Mars Mission project, in

“classSprite.cs” file at line 1690.

As an example for the final warning in the Table above, “Fields must be
declared with private access. Use properties to expose fields.” warning was found in the
Mars Mission project, in “classControls.cs” file at line 399. The line code is:

public string _strText;

5.1.2 Naming Warnings Extraction

In order to find the naming warnings, we have several rules, which validate

naming warnings, such as:

1- The name of the following components must always begin with an uppercase
letter: namespace, class, method, enum, struct, delegate, property, interface,

private, public, internal, and const.

2- The name of field must not contain an underscore.

3- The name of field must not start with an underscore

The naming warnings were extracted using our own SCA tool. We found a large

group of warnings. Table 5.3 shows examples of those warnings.

76

www.manaraa.com

Table 5.3: Naming warnings extraction examples

Naming Warning Project File Line
Field names must not contain MainWindow.xaml.c
. Calculator 27
underscore m_cfgFilename. s
Public, internal, and const field names
must start with an upper-case letter: | Mars Mission classCave.cs 12
intStandardCaveCellDepth.
Field t not begi ith . .
ield name must not begin with an Design Editor.cs 15
underscore: _cancel.
Method names begin with an upper- Code
Page.xaml. 29
case letter: convertButton Click. Colorizer e
Cl t begi ith MyControlS
ass names must begin with upper | MyControlSa dblmageBox.cs 68
case letter: dbImageBox. mples
The name of interface does not begin
with the capital letter I Design SearchDialog.cs 51
SearchableBrowser.
E t begi ith . .
fum fames s §g1n WL A N ars Mission classShip.cs 17
upper case letter: enuShipModels.

As shown in the Table 5.3, if the field name has a private access modifier, then it

must begin with a lowercase letter and not contain an underscore, or start with an

underscore, such as:
string m_cfgFilename = string. Empty;

private bool _cancel=false;

As for the warning “The name of elements must always begin with an uppercase

letter.” the elements are: method, class, enum, public, internal, and const field.

Code Examples:
void convertButton_click()

public class dblmageBox

77

www.manaraa.com

public enum enushipcondition

public static int intstandardCarecellDepth;

As for the warning “The name of interface does not begin with the capital letter

1.” this warning recommends that, the name of interface should begin with a capital

letter 1.

5.1.3 Ordering and Layout Warnings Extraction

The ordering and layout warnings were extracted using our own SCA tool. The

tool extracted several types of this warning. It is found that, ordering and layout

warnings are divided to several types such as:

1-

All constants and read-only private fields must be placed before all non-

constants, non-read-only private fields.

The access modifier keyword must come before the static keyword in the

element declaration.

The access modifier; internal must come after the protected keyword in the

element declaration.

The using directive must be placed in a namespace

The curly bracket must be placed on its own line, if a statement spans

multiple lines.

If a statement contains opening and closing bracket in one line, statement is

written completely on a single line.

Table 5.4 below shows some examples of ordering and layout warnings.

78

www.manaraa.com

Table 5.4: Ordering and Layout warnings extraction examples

Ordering and Layout Warning Project File Line

Using directives System must be

o Design TextInsertForm.cs 1
placed within a namespace.

All constant and readonly private
fields must be placed before all non- cwTab DoubleBuffer.cs 264
constants, non-readonly private fields.

The access modifier internal must
come after the protected keyword in | FishTank src | FishAnimation.cs 9
the element declaration.

If a statement spans multiple lines, the
closing curly bracket must be placed | Mars Mission | BitmapRegion.cs 14
on its own line.

A C# statement containing opening
and closing curly brackets is written | Mars Mission | classAstronaut.cs 295
completely on a single line.

As for the first warning in the Table 5.4, “The using directive “System” must be placed
within a namespace” warning was found in the Design project, in “TextInsertForm.cs”
file at line 1. The line code is:

Using system;

Using directive was not placed within a namespace, so this warning is appeared.

As for the second warning in the table above, “All constants and readonly private fields

2

must be placed before all non-constants, non-readonly private fields.” warning was
found in the cwTab project, in “DoubleBuffer.cs” file at line 264. The line code is:
public static readonly int

public const int

As mentioned above, all constants and read-only private fields must be placed before all

non-constants, non-read-only private fields.

79

www.manaraa.com

Another example:

private int x;

static private int a;

As for the first warning in the table above, “The access modifier internal must
come after the protected keyword in the element declaration.” warning was found in the
FishTank_src project, in “FishAnimation.cs” file at line 9. The line code is:
internal protected int x;

The keyword protected should be preceding the keyword internal.

As for the last two warnings in the table above, they are related to layout
warnings. They are recommending that the opening and closing curly brackets must

each be placed on their own line.

5.2 The Automatic Modification of Proposed Warnings on Tested Code
From previous studies, analysis, and comparisons which we were carried out and
applied on some SCA tools, such as JustCode and StyleCop, we noticed some

differences between these tools, which were previously mentioned.

It is noticed that, there is a key difference between JustCode and StyleCop; the
JustCode allows the programmer to modify or alter the original code to match the
recommendations, using “fix” option. On the other hand, StyleCop recommendations

are more comprehensive than JustCode recommendations.

Hence, we thought develop an option in our tool that can compromise between
the StyleCop and JustCode properties. These tool recommendations are comprehensive
as StyleCop tool. It should also allow the programmer to modify or alter the original
code to match the recommendations as JustCode tool. It is worth mentioning that, the

number warnings in our developed tool is less than StyleCop warnings as we did not

80

www.manaraa.com

include evaluating all types of warnings. However, it allows modifying the original

code as an option similar to JustCode.

In this section, the process of the automatic modification on the code will be

shown, on maintainability and naming warnings.

5.2.1 Maintainability Recommendations Automatic Modification

According to Table 5.1; the process of the automatic modification on the code
will be done according to the recommendations that are related to the specific code line

and it follows to the maintainability rules.

Figure 5.1 shows a sample of the process of code modification.

The Fedlowrg Wi Has Cerured 1+

B The claes pund harew 0 acoes mocfier. w | wnrg Bpubem; &

15-The methed must hare an access modier,) e System Threading: 1
I Tt rumber of mainibdity Program.o warmings rausi 7 g Systeen. Windsers Farm: i

ey Ol b

27~ The fekd mus have an sccess nodifer. g Mo Windowadi) Codenck Tskbar,

- The Prapesty suat have a0 acces madifer

mm;hﬂmuﬂi-fmmnm Fanesae Ong

2= The forkel st harve i i s,

30-The fiskd must have on scoess modifler. 1 xommary >

) Thar Firckd el harar o e mexkfier. 1 Tt e ey puinl o B sogkcabion.

“5- The mreathed muset Farve i booess modfer, I 4 fnamrays

£2- The methad must herve o pooess modfer. [STAThraed]

E8-The e thzed muml Feirer on acoems e i il wemd M)

T2-The rathed must have o socess modier,

- The methed musi haree o acoess modiler, ksl frytinsionce;

107 Thi reund st huave o scomis s,) Ehmch whebm Boe applcation b s macly rursiny.

13- The metod must have i scoess modfer, Wi Ut = ness Mutes(true, O, aut fritinstance):

2011- Faeldy st be declares with privese acrem, Lse - -

' i
| Cipen Dragaory [Hm#wﬂnw“ pen P |"‘-‘1WH“"WW|| Lyt WG HI‘:M || B |

| i

Figure 5.1: The process of automatic modification on the class element

It can be noticed from the Figure 5.1 above; that after the warning was detected
by the developed tool. The tool recommends that the class must have an access modifier
(public), the tool modified the code at this line, and showed the modified code line in
the other box, “public” keyword was added, as follow:

public static class Program

81

www.manaraa.com

Figure 5.2 below shows how the tool detects the warning the “method must have

an access modifier” and update the code.

The Falloming Wiming bas Occured |

§-The dags mgt have an dccess modfer, = nameapscd Ogs -
15 The mei0s Tt Rave a0 accesn merifer, i [
l The numter of mairiabdity Prograe. o mamngs eou 1 hf* wark class Program

7- The feiel mumt harve an anoess mocder, i enmm—ary s
2= The Progerly mus] haree an accest modfer, {1 The masrs ey oo for e appicabon.
mru?rﬁmmmm.um £ fguTnary

27-The Beld mist i N socess modder, [

23 The fekd mut burve an acoess mecker, baal fratingiance;

A= The fekd must bave an scoess modler, 1 ek wheether Por mopication i veady rarng,
41- The metod mat have an acoess modfier, i Ut e Mute (s, Cioa, out frstinance]:

B=The mmmnum. !{'m#

T The meine muat have Bn acor medifier. I ¥ v 3 aneder Fazance runneng, et the commans ine agrumenty and
103 Thee meethed must harve an actess modtter, [mend them a8 & wirsiows metaage (o Sal i,

123- The mesthod must have an booess modkier, Propessagruments();

01 Farisls must e vesianed we privaie acoess. e - 1

.

| Commommctory | | wamatitey arregs | | cosnrie | | momngvamngs | | ootunguinngs | | o wwnnge | [pdtcote || em

Figure 5.2: The process of automatic modification on the method element

As shown in the Figure 5.2, the tool recommends adding an access modifier at
line 15, and then allows modifying the code at this line, so the method then has a

comprehensive declaration:

public static void Main()

The Figure 5.3 shows the process on the code in the “MainWindow.xaml.cs”

File; at line 29 which indicates that the property must have an access modifier.

82

www.manaraa.com

T Fuizrrsy Wiy b Ccruamd <

9= The ass musd harve an et medifier. & g FrRlemad .-

13- The meethod must haree an pocess modier. 1 3
' T rusvdeer of ssinlobellly Program oo merring eoquai 2 rr-rwmh

27 Ty el macmt have an acvesa medifer, 1 wzurenary s

2 The Propesty musl e an acoras mecer, I 7 e e

Thes rumber of s abilTy Maniindze, i, (8 mimings. I lurrracys

egueh 2 ?.u:wammm

2 Thet fad et hawe 0 sceisa modifier. mmﬂumﬁ;{p&cg:}

28 The kel munt e an cvess medifer. privpis =_cigFlename = yrng E=pey

Al Thoe e st e acoen ey sk -M-pl_-_:l'pl-—

4. The methad must have o otess modier. {

B2 The meethad munt haver am access meckfer. ert [retuen m_chfiename: |

58 The methed must have an sccess modifer. wot { m_glgFiename = vl }

72 The meethod must hanee a0 access modifier,]

- The methd must haner o aererss mecifer,
03 The metesd must have a0 acoess mesdber, m
183 The metodmust have i scoess modter, P

201 Farirla ot be el nifh privade aerem. Lis ¥
| Goenorecery | [mamstieewarmnas | | cosnrie | [Homngivemngs | [oarog wunngs | | ovmtwanegs | [etcse || om

¥

Figure 5.3: The process of automatic modification on the property element

As can be seen in in the Figure 5.3, the tool modified the code at line 29;

“public” keyword was added.

Figure 5.4 below shows that the tool recommends that “The struct must have an

access modifier”, the Figure 5.4 shows the modification on the code.

T Pdwireg 'Woarmaneg s Ciocured ©

55 The Field sl havet o s seekfer. - i -
207~ The mesthad must harve an sockss mdifier, _iuabion = doaten; =
7L The Simoct must have pn sezess madife E| = nem w it B
‘ A5 Thes kel mmsit v i st sl

6. Tree: mesthiad must hares i Bcoess modifier. bl Ft‘WnMpl

sturn roew Porklx ® CommoriSis, GraohcalCarvas, CanvacSurface Arils, = *
Lonvagiurface s,

25~ The field must have an adoess modier,
30+ Thie Akl must Parer an ncoess mocier,
22-The fekd rust barve an acoes modder,
:m fiekd mustharve an mwﬂh-
3 The mmmmumﬁ

60-Fields mhwﬂt prripe pooess. Lse:

i b cpeae
- Piskds mut be decated with prvate scoese. Lse mmmmmﬁl
eropertes b epose ficids, .

| | Somoeecony J[r-mw-u; waregs. | | orcorg ey | [wapivanng | [emcose || em |

Figure 5.4: The process of automatic modification on the struct element

83

www.manaraa.com

Figure 5.4 shows that the tool modified the code and “public” keyword was
added, so the line code becomes:

public struct Sample

As shown in Figure 5.5 at line 13 in “classAstronaut.cs” File, there is a
recommendation demonstrates that “The enumeration must have an access modifier”.
Though, by looking at the box in Figure 5.5 which includes the shadowed code, the tool
modified the code by adding “public” keyword, for example:

public enum enuAstronautProficiencies

As shown in the Figure 5.5 below the code was modified by adding access

modifier to enum.

The: Fallawing Warning Haa Cenared +

142 Forkds rarat b cheuemnd s private scores. Lne BT

roperties i epose Saids. g Gyt bem Funting. Serisinaton Formitiers Bnsry;

141- Ther ekl mumt harve am e medifier, wming Syviem Rountime. Serialiranon;

13- The S russd. haree o mccess mcadfier, g Spilem 0y

143- The fekd must harve i potess modfer,

144- Thie fied mumt harer i access madifier,

A5 The ekl must burve i aciess meddifier.

144~ The feld must barve o pocess modifer

142 The fSekd mumt herve am acces madifier,

hwﬂwrMWﬂll ?&uw

13- The Enumeraion musi have an scors modkder prfaie wtan clmsbaronaut(] chvronauts = new cdamsAsona{l]

18- Pkl oot bee eclaned with o vate BComs. Lse s bl dasshstioral] #_chabonauts

properies to espose fekdy. {

M- Fariths et bt declaned with prionle aocees. L gt { nttien chalronsty;)

Prageres o expose fekds, 561 | Shstronauts = ekt |

157- The metnd must have n sooess mesiler, =k

152 The rerwad rwnl bawe i adoran modfer. L] phents slalie il ekl = 0

et The metod st have a0 sicess modder, - hake AEP_rrruslD £ |
4. & C= documend may orly conltom asngle casatthe . | .

Figure 5.5: The process of automatic modification on the enum element

As for the warning “The field must have an access modifier”. The tool

recommends adding an access modifier “private”.

As shown in the Figure 5.6 below, the tool adds a private access modifier, and

then adds auto-implemented properties (private class accessed via get and set

properties).

84

www.manaraa.com

The Following Warming Has Occured :

« fl MNotice that delegates are used to handle status and data events. u
28-The field must have an access modifier, Ml \When settings are changed, you dose and reopen the port. |
30- The field must have an access modifier, B Il «code |_|
31- The field must have an access modifier, [l Jif CommPart com = CommPort. Instance;

34-The field must have an access modifier, Jif com.Close();

38- The method must have an access modifier. Jif com Porthame = "COM4;

42- The method must have an access modifier, Jil com.Open();

60- Fields must be dedlared with private access. Use Il <jcode>

properties to expose fields, Jif <fremarks >

61- Fields must be dedlared with private access, Lse public sealed dass CommPart
properties to expose fields,

The number of maintability CommPort.cs warnings equal: 8 private SerialPart _seriglPort ;

public SerialPort P serialPort]

37-The dlass must have an access modifier,
33- The field must have an access modifier,

returm _serialPort;

{
get {

40- The field must have an access modifier, pet { seralPart =value; }

41- The field must have an access modifier. |

42-The field must have an access modifier, private Thread _readThread ;

43-The field must have an access modifier. public Thread P_readThread

44-The field must have an access modifier, =B 5

| (i | [(st (i (i []|

Figure 5.6: The process of automatic modification on the private field element

As shown in Figure 5.6 above, the tool adds a private access modifier, and then

it declares setter and getter methods.

We described the warning “the field must have a private access modifier” in
other words, if the access modifier is not private (i.e. public, protected, or internal), then
it should be converted to private, then the property access modifier should be the same

as after the modification.

5.2.2 Naming Recommendations Automatic Modification

This section will rely on the Table 5.2 in section 5.1 in the process of automatic

code modification that is implemented in the tool.

Figure 5.7 shows how the tool modifies the code which is the result after
implementing recommendations which states that: “public, internal, and const field

names must start with an upper-case letter”.

85

www.manaraa.com

Ol LAC U Zyl_i.lbl

] mmwm_'_—‘ e 5 |

Thes Py Wartary) Hak Ocruned @

10 - clas Admess ! beg with Lsper carke lettir!
SaiCive T
L2 - publec.naemal, ind coret Seld names must sant wiha
e -case ttir: imtEtandaaCaveellenth

L3+ pubcimteerial, red ciored fekd names musd st méth e
vt e | (el

18 - bt mtieerial, el ciored fekd names st aterd with s
e avoe et iy

17 - pubde imbeerial, el o ekl names el atar withr
RAEET i et BolAcker;

19 - pubdie.imbernal, arel cored Sekd names sl slarl nitha
T i et

20 - puble moeenal, peet ooont et names must S R B
e 16 0

26 - method names begin with an per e ket
dessCave

A3 » method names begin wid mn upper -Cese letter

Ay - methiod nanes begn Wil B LpDer Cae leSier;
P oot

| [aetabey wames | | compe | | e v | | s warwsn | [ot e | [Eatcede || me |

Figure 5.7: Modification on the non-private field element in naming warnings

As seen in Figure 5.7, the “intStandardCaveCellDepth” field becomes
“IntStandardCaveCellDepth”, depending on the previous recommendation. Also, class,

method, and enum names must begin with an upper case letter.

As for the Figure 5.8, it asserts that the name of interface must begin with the

capital letter “I”.

The Follcssireg Warang Hass Occared |

L - fid et g i e wiE B andiericaiel + Messagebondosn Dodenabanli .

v]

13 + Pk v, st ot ot undericore _jrowie |]

- ekl ok b il et

14 - Fieied names muat mat contae undemcen _laat |

7 - meathad names Regin Wi n U -cae it e

L Cancetfution_dinbiect

I7+ s b il) P Cabe Rt [

fincilution ek Evarabigs

i e caeeh il

51 « The name of nirrfaoe does ot begn Wi the optal Cioae(l

Istter [SeprchableBrowger 1

= = . m
[
rﬂwwqhﬂh—mwmﬂwumn :|
1

| comonmery | | anibty s | | e | | ey e | [cranrgoresn | | iaevresn || oscon [e |

Figure 5.8: Modification on the interface element in naming warnings

86

www.manaraa.com

As noticed from the figure above, the “SearchableBrowser” interface becomes
“ISearchableBrowser”, depending on the previous recommendation, as follows:

public interface ISearchableBrowser

Applying the recommendation which results from the warning “field name must

not begin with an underscore”, the tool modifies the code. Thus, underscore -that starts

a field name- will be removed. As shown in the Figure 5.9 below:

|

The Folgwang Warning Has Ooosred ; |
15 - Aeld rame must e bege with anundersoore: oo < Lang Systemy -
15 - Fiekd remes mrasil rual conin urederatons_gonerd 7 | g Syidon. Colestorn, Qe y |
1 = moethond rumees Resgins it) P Caie efler; l s, Componen Sodel;
webfromser | Gotfoos E wEng Systen Date; |
T - urthexd ames begin Wit A UMY -CABE iefier] J g Syyhem Drawirg;
reehifirowser |_Manigated weing Sysiem, Texl;
#21 - rathod nafes w1 ey b Rt SNy Systen. Windows.Formi;
3+ method begn with licties msmmapm

' name o g e el s g i
m,‘l‘nl’.‘l#d
00 - i thod nimes begn Wil 80 L0 Gt lether rlmesnace Deson
fomiComhafica_TextChanged |
X ~mmmw-llmwpt-¢tnldh= e par bl dlaen. [l - Ui Cioedrol, it hdsiediosin r
v
1105 - meshod names begn with Bn uDper-cese ketien
7 mﬂh'u;mnhmmmhm muhﬂmnﬁém faine
118 - ames i o = {ine
pagteToolrpiytten rvabe ool = faisg;
1137 - meshnd names bogn nith an uoner case lerier; prreate bool sean = falae;
e Tl tter it - -

|| Gombnecry. | | Mansssey oneen | [coentie, | | namearwan | | cvswrg wwegn | | cooutvarngs || encote || em]l

|

Figure 5.9: Modification on the field element that starts with underscore in naming

warnings
5.3 Comparing Between Our Own Tool and Other SCA Tools

This section will focus on the differences and similarities between our own tool

and other SCA tools, specifically JustCode and StyleCop tools.

Table 5.5 shows the comparing between our own tool and other SCA tools such

as JustCode and StyleCop tools.

87

www.manaraa.com

Table 5.5: Comparing between our own tool and other SCA tools

Category StyleCop JustCode Our Own tool
Access Modifier Must Access Modifier Must
Be Declared Be Declared
Fields Must Be Private Fields Must Be Private
Maintainability

rules File May Only Contain File May Only Contain
A Single Class A Single Class
File May Only Contain File May Only Contain

A Single Namespace

A Single Namespace

Naming Rules

Field Names Must Not | Name does not match | Field Names Must Not
Contain Underscore the naming Contain Underscore
convention
Field Names Must Name does not match | Field Names Must
Begin With Lower Case | the naming Begin With Lower
Letter convention Case Letter
Field Names Must Not | Name does not match | Field Names Must Not
Begin With Underscore | the naming Begin With
convention Underscore
Accessible Fields Must | Name does not match | Accessible Fields
Begin With Upper Case | the naming Must Begin With
Letter convention Upper Case Letter

Interface Names Must

Name does not match

Interface Names Must

Begin With | the naming Begin With |
convention
Element Must Begin Name does not match | Element Must Begin
With Upper Case Letter | the naming With Upper Case
convention Letter
Using Directives Must Using Directives Must
Be Placed Within Be Placed Within
Namespace Namespace
Ordering Rules Constants Must Appear Constants Must
Before Fields Appear Before Fields
Protected Must Come Protected Must Come
Before Internal Before Internal
88

www.manaraa.com

Curly Brackets For —_— Curly Brackets For
Multi Line Statements Multi Line Statements
Must Not Share Line Must Not Share Line
Layout Rules Statement Must Not Be —_— Statement Must Not
On A Single Line Be On A Single Line
. Change on code Change on code Change on code
Automatic Code . .
manual automatic automatic
Number of . .
um ?r 0 Changeable Fixed Fixed
Warnings

It is noticed that, the number of JustCode recommendations is few. However,
JustCode allows the programmer to modify or alter the original code to match the
recommendations. On the other hand, the number of StyleCop recommendations is
more than JustCode recommendations, while it does not have the option of automatic

updates.

As mentioned in section 3.3, there are StyleCop recommendations -such as
maintainability that do not exist in JustCode. Hence, we though to design an automatic

SCA tool, that modifies the code based on specific rules.

In this section, a comparison will be done between the results that were obtained
from our own tool and StyleCop tool, in terms of accuracy in finding warnings, and
compare them in terms of inconsistency between the results, or in terms of the ability to

modify the code as JustCode tool.

Firstly, we are going to discuss the differences and similarities in the process of
giving the warnings. As for the similarities, as noticed from the Figures 5.10 and 5.11,
our own tool and StyleCop results in the same warning at the same line for the same

tested file or class.

89

www.manaraa.com

Ervex L
[D¥Emen [t mares [N
Dmmpies - Colamn Projest S
A 130 SRLIO0: Tha Tl maiin e a0 g0t mviaddie T b P vl Coruing
& 133 SA1M00: The Sk masst burow an sccem meedidie CreptForreumla
B 1A BRI Tha Tk it has a0 secens madds L srvn gl iy
A BEF S0 Th ks maust burew it aceei e riphForroumiza
B 3 AL Tha Tald muet s am aceeey mdilion. CasphF o ani sy
L 388 SRIAO0: T Sanl it MR B BECED] mEtiet R LV
b ME SALEN The fekd ot heve an scc e medife imaphForroemd i
£ 133 SA100 The mathod mant Sase @ scoem moafe gl oo
A 1M SALEN: The serthod rraisl Bave a0 Sdrn modfe maphF orrruarmill
& 135 SAJ400: The mathcd mart bavy o oo modfn, rapt¥Formuamin
A 13 SALDN The reethud il Rave: a0 eOur rodfien Do b
& 350 SALIOY: Thy rathod et By i bt mpdifom. gl
£ UM RRLON The mthad st S an a0 modfe e i e
2 Ervem Lisl

Trdanps

rassEspEYES NS
§

Figure 5.10: StyleCop tool warnings results

The Fallowng Warmng Mas Oooured ©

s 5 WY i ——————" & nanrspace Cakulator
8- The ekl munt e a0 aocess modier, [1

| 40 Theg ekl must v g mocesy modifer. 1 il ammrary

A= Thee e el vl b i et modéber, {1 rberction loge: for GraphFors, vaml

- The ethed mas! havi bn sosess modder, 11 2 foammary s

£8- The method musi have on access modder, public pariil dasy GrephForm : LserConirgl

{ [
- Thet merthod must havk &0 Bosess modier, Drivit Calorlatopun m_skorPoous |
H02-The methed must haree on sccem redifier, puble Cobyrinfopun P_m_ooirPooun

201 Fds pust b dechared wih prvite accest, Lise { retuirs koo
perperties 1= reae flekds, F{NW'M1

|| 13- The ekl rmnt hares iy scorss mockifer,

134 The method must have an becess modfier, vt CakCorfigm_eonfg :
153 A Ca cooument may oely eovviain & sngle chm ot e puble CalrCnedig P _m_ernflg
e bl uriess o of e clatses o g el and e o B [

s e et {retumom conflg; b
354 The fiekd must have an aceesy modifer, et [m_ponlg = uplee }
155 The fiek] must have in scoess modifer,
7> The method must have i sireis nodfer. pubke Cactonfly Confg .

ouectory | | Mansbty wamioge | | opepie | | tameg amegs | | onderrgWirorgs | | Lt o | [Eicoe || b |

e =_—=.i

-

Figure 5.11: Our tool warnings results

As noticed in the Figure 5.10, StyleCop tool detected a group of warnings

related to maintainability, they are:

e The field must have an access modifier.

o The method must have an access modifier.

In the file “GraphForm.xaml.cs” at lines 27, 28, 40, 233, etc. as shown in Figure

5.11, our own tool detects the same warnings at the same lines for the same tested code.

90

www.manaraa.com

We will then evaluate the differences between our own tool and Style Cop, for
the process of locating the code line which contains the modification. Figure 5.12 shows
the results that are obtained from applying StyleCop on the MarsMission project. Figure

5.13 shows the results that are obtained from applying our own tool on the MarsMission

project.
P = clans Unisiosslssggiyrtgs-iprdongbiss = form
. il QbiToy = new Latwi{);
sba] JElBettem = mew ebsl();

i e T T T .
| Q0o | 1309 dewerengs |1} Mgt d

Cwssmbon ' th lne Cobarn Prouct .
A T TARTYE Fld rusmie mast Rl corlam phdencine. il L 135 1 lat. L
2441 BRZEN: The mnam mest vt an scces meddi TanAEonkL o bi 1 Rlan Mo
& 1177 SALSOG: Thar asisti froedd b B0 SCCi il it T [1] 1 Ml bz
B 190 SR3A00: Thee Pk et v ary ey oo wamfine 14 1 Mlary g
I LALEID: The Ferld rrul haee i B Ces maddie fer - M 1 Mail Whicar=
& 5% SR The Farkd rard haver an e mecfn wambnn e] 1 Mlgry L
& A0 BAZEOD Tha ek il cE B CE meaabieEL B A L] I LU TR
L AT LA The frkd mand harvr an scoen mocddie warnfae s LH 1 hilany W=
&AM BRI The Pkl i vt BN BCCES Meschiei CasIRER AR L] i LU Last= ol
& HL SRR T frkd et hat in 800 medle. ihiiBe [| Il i
&8 LRI The Feld st e an asoem madife danbna L] i gy Whige
& AT SRINGG Thes Ferkd rrasl bl 01 i LA ool ChisBEie 3 L& 1 Mt Lirigas

& L >
_

Figure 5.12: Apply StyleCop on MarsMission project

The Fallnsiryy arming o Ocrured |
38 The metoxd st haree an access modkfer, & ®
a:n:w-‘ht meodd muat have an potess moder C__ gesPer L iR L
700~ The method muat harer an access modifer. [
|| 2039 The cless sl Fuve an scoms sedifer, Exivirle Listosl Tty = e Lol
-H‘ll Nwmtﬁﬂhmm ke Lot B0
fiekd mumt have an acres mecifer, {
Hﬂtlﬂm:mmmuﬂh et et BT }
5 Figids myst be declaned with private sccess. Lise set [biop = valpe: }
prigeeeen b Expenne ek, }
- The flekd must have an scoess modifer, peivite Lol B tR0m = e Labei))
2877 The metnd moet heve an scess madifer. ks Lol P IiEyionm
DL The s st haver 3 mcemss rodfer. i
231 A C2 dacument may ooly contse & sngle cdasd st the u::t{rn.mwam }
reat kevel uriess ol of By casses e porial aed e af the wrt [bilfizkinem = valre; }
e Ly, }
HHWMMMMMM vty Tentlon titsethumlnsgesPerQuarteriotiton = new Texthoxlk
The mrie =l raarishley Poreblarshivnn oY WG 1 bl Tewthen P_poitedi i L
L L B i
| et {renm et amimegesFerQuarerRotation; m
o 8et [St themimageder Quar drfistalion = v | -

| openprecry | | menwesywanegs | [coenrss | | remnguemngs | | craemaweno | | uvostverne || eatcose || Em |

———

Figure 5.13: Apply our own tool on MarsMission project

As noticed from Figure 5.12, there is a class declaration called

classSetNumImagesPerQuarterRotation at line 2839. However, the StyleCop did not

Ol LAC U Zyl_ilsl

91

www.manaraa.com

recommend that “The class must have an access modifier”. On the other hand, as shown
in the Figure 5.13, our own tool recommend that “The class must have an access
modifier” in the left box, and in the right box. It modified the code by adding a public

access modifier. Such issue may need to be investigated thoroughly to be generalized.

As for the inconsistency issue, it is found that, the number of warnings may
differ from in JustCode when running the tool more than once in the same code. An
example of this is shown in Figure 5.12 the number of warnings is 1389, but as noted in
Figure 5.14 the number of warnings is 1017 when running the tool another time. We
evaluated our tool on several codes through running it several times on each code and

results were always consistent.

Erren it -
[@0Emen | 1007 Wamngs [(1] BV mages

Eewngzon E i i oo Pt J
&% Fald cloafcistedmigeidftmog roowor @ rear megeed o, and wil wharys bag d sefaalt vl el clanPipteEmege-i L11}] Wy Maggsgn
87 Fge Towpher Tonl Ponal_Grophin T estadiombhany o ool o ool i ek i SV maty Uil B NEWang gsuegioss chmpph T IE e]] b Bbiijein

2 PREE R P o T
&1 Foouliemeaiden smeTy mRENEN [T HL T L oY W T W M
& 1E GALONE The spasivg mowed L kyweed Tod il ErupRigee.oy] i by Magice
& 04 SEUO0G The specing smund the oywes Tor o nld Bamapfagen o ina i Bt Blaraen
561 SALOOY: The sputing srtnssel the kipmeard T et Btmifegm w1 By Rhssicn
& 13 Lhpo0% The gecng arousd the kepeesd ' o ek Bdrnupiague o1 n i W Nlrsr
2 13 SAL0: The spacing meusd the kepsd 1 el Baenipfirgee.ot n 1 Wi Rlagpacn
A3 SADOE The spacing sroced the kepaed T n maskd BdrrapFegeon 1 1 1 Wum Mazen
&N LAL0H The ppacg snaesad the lrpaasd F @ sestd o e ppes. 51 iay 1 (LIS TP
& 47T SADOOG: Tha pacing seusd the krpeesd W B sunld Earmaphigaern i] 1 B Manes
& TR AU el npicang dround i comem, clmiletioned o L] i Man Magen

o e I ——

Figure 5.14: Applying StyleCop on MarsMission project in second run

As for the process of inaccurate modification on the code by JustCode tool; in
other words, a field has a public access modifier that is converted to read-only by
JustCode, this modification assumed to allow public access to the field without allowing

it to be changed. However, this may be considered as changing the code improperly.

We used (setters and getters) as an alternative (Figure 5.15) which does not

modify the field visibility scope.

92

Ol LAC U Zyl_i.lbl

www.manaraa.com

Sequengel]]

L' DO OREY B juadsie afrak Bl
1575 - Foedd namesl mutt Rt Sonian Undenscons LAV _ALPHA |
189 - ek names must ot conien urderscone ULW_OPAQLE. publc Int3g ox;
28 - Fickd nemes sl el gondsin urdercors e L oy
ﬂ-ﬁm-ﬂn&mm bl Sipe(inn32 o, Ik o) | thesox = o sy = o) |a
AEC_ME_PHa i 1
%0 - puaih J, ared corat fieid wha (B
ipper-case letber: dwFlagsh
ﬂawwﬂmmul#- [t st (L ponstilie]. Bmcpmeril, Pich w 1]]
- pubbe, mriemal vt wh g
Lo e bt WO e byt B
102 - ol ritennil, el conat fiekd Pdmess must St Wit B bl byte Greer;
wpper oo leteer: WOC); - ks byte el
M-Mﬂﬂ.lﬂﬂﬂmuﬂiﬂl i indki vl Aghay
gmwiﬂ_‘#tﬁl }
ke o lelter: hObgectl; = =

[| ey | e | ey | e e | = | e

Figure 5.15: Public field issue

93

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER SIX

HOW TO USE THE DEVELOPED TOOL

In this chapter, we will explain how our own tool works to detect the warnings
from tested source codes. Each warning class will be mentioned or explained how to
select a file or folder, then how to give a recommendation, and how to modify the code

according the given recommendations.

Figure 6.1 shows the main menu or the graphical user interface of our own tool.

|
| Ooemovectry | [maonotty worngs | | comrie | [s wrogs | [odmgwemogs | | ootwmnogs | [esicow || e
Figure 6.1: Main menu of our SCA tool
The essential components of this screen were discussed or mentioned in section
44.

6.1 Maintainability Warnings Extraction
To detect the warnings and give recommendations by pressing on "Open
Directory" button, this button allows the user to choose a folder that consists of a group

of CS files. Figure 6.2 shows how to select a folder using "Browse For Folder" dialog.

94

www.manaraa.com

(Mmnemrosr | [o][cnen |
[comomnmy | [ttty s | | comrie | | amrg s | | soseg ey | | it oo | [pmmcom || ow |

Figure 6.2: Browse for folder dialog

To proceed, user should click on "Maintainability Warnings" button then the

results will be shown as in Figure 6.3 below. Figure 6.3 shows the obtained results after

clicking on "Maintainability Warnings".

The: Fishirang Wis'rang Has Octured | Code Updated llased on Fe Recommendabord:
5 The clams must have am pezeas modifer. R P -
15- The mcthad mst herer on acere modfer. [|euzpten a
T rwamnber of s babdbty Program.cs marmings sausk 2 g Epetem, Windaent F o
g
T Thee bkl it v i it i g Mezrima . Wik AP Ccellnch. Timskluary
23 The Progerty must have 50 scoess madfer,
mw! of munizbdty Waniindoow, i s mamngs m‘ o
il
oubke BmABC s Frogram
17-The: Reid st hevve: an gz modifer. |
IR The e st ek i i el [T ey =
40- The fisld ruet hive 0 sctess nodfer 111 Thee i iy Dot for the apokoation.
48 The methed must haree am access modder, I wfmmemarys|
3= Thee iruethen] muet harvm i st mociier . [T A Themad]
8- The method mult fave a0 socess modder nﬂ: statie vl Mawn)

k ool frtinstarce;
112- The meSnd must hive 80 stteds modfer. 1 Chedk whesher the socksaban i sready Funring.
183-The mend munt have an accesa madier. i iy = news Mutevime, e, sut frstinatanes);
201 Frekds must be declyted nith private scew. Lve =

| pmorstmy | [Mottty s | [o | | et | [e oo | | arout oo]Lmﬂ_ﬂ___._.l

Figure 6.3: Results after clicking on "Maintainability Warnings"

95

www.manaraa.com

6.2 Naming Warnings Extraction

In this section, we will explain how to apply the naming rules on the source code

to generate recommendations.

Figure 6.4 shows the process of choosing a file then applying the rules.

T T PR L |

st — WY
m.d;hhu—¢ u“_u_-—. -!n | e T F-d

.

| -qu;-lhu—- .

Cara rexdibasi

T a ALT Fax by

ST gl iyt

-
tioh g LT e

B+ 08

T *

il bl

Figure 6.4: The process of choosing a file

Then, press on "Naming Warnings" button, in order to apply the rules on the

selected code, as shown in the Figure 6.5 below. Figure 6.5 shows the obtained naming

warnings and the modification on the code.

The Pohowing Wanneng s Deoured @

1 - clam names mee hege with upper crse lefien

1 = P, bierial, 85 congt Bekd names oSt st with &
LT -CIe lefier; cEamey

17 = puble inberrsl, and ot fiskd names mt st wilh &
pper-Case letter: nivylmquelDc

18 - e inberrial, el corad fickd names sl shark mith &
D -£aé lester; SD0

19 - public,inbeeral, ard corst Aekd names st st with
e <t belter s Byl

0~ puble, inberral, e covat el names oust start with &
s ot lefinr: a0iConisner

12 - ol rdernal, el corst ek rames mal sl sl g

P Chpd lenter; Binde
o e Vo s
O e

3« [e muet not Conitaen indersoons

_AsmEnm
4 - pubienteerial, and corst fekd names st st wth e
e cane letter) Binde flesources

= mSvm:
[wsing Systern. Cobectors, Genaric
|% SyibemLing;

pubke st demflaar|] CBases = new dvmforar{iT]:
sl e D ouie

=0
Pubhe it IntUniguelD;
publs S sksarCietertonOiest CCDO) = s classCalusrOeterropert ()
s il iniepinges;
= puble cesOineciContaner (0Conturer « rew chissOirectContanen):

&

| comonen | | vrrabs wares | | compie | [| | ovseeymanegs | [iomntmeregs | [emcom || |

Figure 6.5: The obtained naming warnings and the modification on the source code

96

www.manaraa.com

6.3 Ordering and Layout Warnings Extraction

According to these types of warnings, in order to apply them on the source code
select a file using "Open File" button, as mentioned in "Naming Warnings" applying
section , then click on "Ordering Warnings" or "Layout Warnings", then the rules will

be applied , as shown in Figures 6.6 and 6.7 below.

Figure 6.6 shows the process of applying "Ordering Rules" on the source code,

and the results were shown in the first box, but there is no modification on the code.

Than Pealirsang Wi mrang tts Cooarad © Cicte icduned Basesd o the Becammenadatora:

L = iy it e Smtees Sul b plaond mil e FaTeRaE - -
- dreciters Gereric mus be placed velten

i

YRAE D PARCES W
e Trers Tand il bt dlecotd il RarseReOr
et e (e g st be plaoed vifen

* ety Taoat e placed sithe roe s
el LT

fii

il

crwctrewn |0t be placed wifen rep—n
Foarma it b s sathen nandanacs
o), Tl i

i
é

Figure 6.6: Applying "Ordering Rules" on the source code

Figure 6.7 shows the recommendations that were obtained after applying

"Layout Rules" on the source code.

Tha Polwing Wsmeng s Coored Coala L d on e
&1« SA1S00: IF b stuiveent sarm e, B doweg - =
SE. LA 1801 A CF wiatenars comdarar ool Hoang
Qurty Bradionts & wWitter oompketely o6 3 oragis e
The &l T
ooty _| (bt Vorees | [o [et | [e | (i) o | [

Figure 6.7: Applying "Layout Rules" on the source code

97

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This chapter consists of two sections the first section will explain the conclusion

of the thesis, while the second will show the future work.

7.1 Conclusions

Massive increase in quantity of software integration generates growing demand
for programmers and their productivity, on the other hand, hiring additional
programmers is expensive and ineffective, especially when the system is in execution
time or is indivisible due to the complexity of modern software, and in order to found a
more viable solution is a tool support, this led to growing interest on the tool that based

on source code analysis.

Our SCA tool recommends some of warnings that directed to programmers to

prevent the occurrence of errors.

There are four main SCA tools warnings were studied in this thesis:

maintainability warnings, naming warnings, ordering warnings, and layout warnings.

The main goal of this study is to detect the warnings classes, and the process of

automatic the modification on the source code based on the recommendations.

98

www.manaraa.com

7.2 The Limitations and Weaknesses
As in most theses and studies, difficulties were encountered. I encountered many
difficulties also the limited time that resulting in inability to detects all the warnings in

our tool, because some warning needs a lot of time.

Moreover, the process of modification on the code needs to apply all the

warnings, and each warning has a group of rules.

One of the difficulties that were encountered during the warnings detecting,
that the warning is given or recommended based on a specific rule, and this rule rely on
the C# element definition or declaration, such as there are many way to write a field
declaration, so that many rules should be written to field declaration, and declaration

nested class.

7.3 Future Work

We plan to extend this work in the future to include the following three areas:

1. Enhancing this work by including all the classes' warnings of source code

to get the best prediction of error.

2. Extent the work of develop tool in the process of the modification on the

code to include all the detected warnings in the develop tool.

3. As for the process of the modification, assurance that did not lead to the

existence of real errors.

4. Adding a new feature to the tool to allow multiple options to the

modifying on the code, as JustCode.

99

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

ABSTRACT

Software testing is one of the most comprehensive phases in the software projects where it takes
a huge amount of time and resources. Testing however is not only the process that occurs after
the implementation executing the program looking for faults to fix them. There are many
supplementary testing activities that may occur within the testing stage or outside that lead to
the same goal as of testing to improve the developed software and reduce effort required to use
it, test it, maintain or update it. One of those supplementary testing activities is source code
analysis. Source code analysis focuses largely on warnings, not errors, where such warnings
indicate possible violation of naming standards or best practices. Such violation may in future
leads to errors and hence should be handed early. Source Code Analysis (SCA) tools such as:
MS StyleCop and JustCode have been developed to help developed areas in their code that
should be improved or modified to eliminate the display if warnings. Some of those tools are
integrated with programming languages environments and compilers. The main objective of this
thesis is to propose and develop an SCA tool that can improve some of the limitations in the
evaluated SCA tools. In order to achieve our main objective, we first conducted an evaluation or
assessment case study looking for limitations and weaknesses in the existing evaluated SCA
tools. Based on such initial assessment and comparison, a list of candidate requirements for the
new SCA tool is assembled. The developed or assembled tool can perform the following tasks:
Detect several categories of warnings, propose solutions to remove those warnings and
automatically apply those warnings if the user or the developer wants to do so. The main
contribution of this thesis is the development of a new SCA tool that can override some of the
limitations of the evaluated SCA tools. The new tool tried to take the good options of both tools
and bypass or avoid their limitations. Results showed that, based on the four warning categories
that we focused on, our tool showed better results in overcoming some of the inconsistency
problems or problems related to the automatic implementation of recommended corrections.

Key Words: source code analysis tools, static code analysis tool, maintainability warnings,
software testing, software quality.

IX

www.manaraa.com

Lealall

TP o s ol ;.\A‘)..d\ @J\\ ",A‘;__élﬂﬂ\ :"“gL_;\‘)A\ —iS io..n_l_a_,HQL_\Mw ‘),\3\ ‘)L._ua."'\

Eaall el) 3 0 g i s il A lead) o 8 G 14 S))yl g Bl el ;S 150 8

P8 SEE KRG JUNE- RS | oS X | T SN[S N| ISPNKLVN . YN PG, WO P S S S

d.._;\m_s'é‘)}__hd\f\\ EE ‘).\&\u; \ﬂ‘} \ﬂy\wua_@l\wu_jgaps_ﬂ\u;ﬂ\c)u

)

JsaY dda &3 Gy asa Ay A faad gl 4 e Jaldall g oo)l 0dl g caaladt WY g Uaall 3 gall
el dadI Y el ph e 5 0 IS S el el Jlad 5 Sy el ol gl o Ll
i laal) Jiadl ff Aa il Gl Bl S aiaa gl)y il ed A Jofle s
el) Sae Lgale ol ol iy o g il g celdadl) (a5 2 Bl w1 s e
kil deaclwdllens ki JustCode s StyleCop J—ia gl) J—las
U PSP TGS ' NS P FRNVEN. I ¥, S | UP'D SOS N - SO | [FCH WL 51| I G BN |
O e Y R al L L NS e BICE P PRSP LS
A O3 O Sy () SCA ol gy) 58 5 da g sl od gl it Il Cax I
A Al 50 i MY 5 Ly el L8 3@t sl (e SCA & ol (3 o 5l

s il 13 s e el 5ys SCA ol 8 el bl 85505l e o all oy

Mgl Laad il o a8l 8 A gl A 3) ol dhatall (e Al apand a il
Oe a8l 3aY) adat s 1L gl 5 Lpasaaay Loiad il 1Y) Lgide <o tial) (il b) o

Jsda ol 5 iy ondll (iamy oo Laliad il &l o) JBie il jd sl o el S50 o

Ds—hall s anaiall GL S cl ppa sl el WLl O dad) 3pdai g el sl el A5y
SCA 3ol Clasiul a4 s gyl od gl iyl Al wd)h g8 (3 el 13 iy o oy

ol il ol a1 8 JSL el G sla e s a8l Lr T il g s s

Baaall B1aY1 o5l L lals L giatlae 5 Lgagiity Liad il <l il g1 5 e day)Y Ll

Gl s rad G gl ol (i a1 gl A el cl 51 (e Jiadl 5)0 8 L gl L

O el o 3121

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

TABLE OF CONTENTS

Contents Page
AKNOWLEDGEMENT |
TABLE OF CONTENTS 11
LIST OF FIGURES AV
LIST OF TABLES VII
LIST OF ABBREVIATIONS VIII
ABSTRACT IX
I. INTRODUCTION 1
1.1 Overview 1
1.2 Dealing with Quality Problems 1
1.2.1 Dynamic Testing 2
1.2.2 Metrics 2
1.2.3 Source Code Analysis Tools (static testing) 3
1.3 Sample of Source Code Analysis Tools 3
1.3.1 StyleCop 3
1.3.2 JustCode 4
1.3.3 FxCop 5
1.4 Problem Statement 5
1.5 Research Objective 6
1.6 Research Importance 7
1.7 Thesis Structure 8
II. RELATED WORK 9
2.1 Software Metrics and Class Change Proneness 9
2.2 Testing and Source Code Analysis Tools 14
2.3 Software Quality 17

www.manaraa.com

2.4 Maintenance 20

II1. STATIC CODE ANALYSIS TOOLS 23

3.1 Static Code Analysis Tools 23

3.1.1 Warnings 24

3.1.2 Errors 25

3.1.3 Information 25

3.2 What can Static Code Analysis Accomplish? 26

3.3 Analysis and Comparison: Source Code Analysis Tools 27

3.3.1 Analysis: Source Code Analysis Tools 27

3.3.1.1 StyleCop Tool 28

3.3.1.2 JustCode Tool 47

3.3.1.3 FxCop Tool 49

3.3.2 A Comparison between the Tools 51

IV. RESEARCH GOALS AND APPROACHES 54

4.1 Differences in the Results that come from each Tool for the 57
Same Source Code

4.2 Weaknesses of the Two Evaluated Tools 62

4.3 Inconsistency Issue 65

4.4 Tool Implementation 68

4.4.1 Requirements 68

4.4.2 Implementation 68

V. EXPERIMENTAL RESULTS AND ANALYSIS 71

5.1 Source Code Analysis Tool Warnings Extraction 71

5.1.1 Maintainability Warnings Extraction 73

5.1.2 Naming Warnings Extraction 76

5.1.3 Ordering and Layout Warnings Extraction 78

5.2 The Automatic Modification of Proposed Warnings on Tested 80

www.manaraa.com

Code

5.2.1 Maintainability Recommendations Automatic
Modification

5.2.2 Naming Recommendations Automatic Modification
5.3 Comparing Between Our Own Tool and Other SCA Tools
VI. HOW TO USE THE DEVELOPED TOOL
6.1 Maintainability Warnings Extraction
6.2 Naming Warnings Extraction
6.3 Ordering and Layout Warnings Extraction
VII. CONCLUSIONS AND FUTURE WORK
7.1 Conclusions
7.2 The Limitations and Weaknesses

7.3 Future Work

VIII. REFERENCES

81

&5

94
94
96
97
98
98
99
99
100

www.manaraa.com

Figures
Figure 4.1:

Figure 4.2:
Figure 4.3:

Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:

Figure 5.14:

Figure 5.15:

LIST OF FIGURES

Title
Methodology phases

Generated warnings from StyleCop tool
Repeated warnings from StyleCop tool

Inconsistency between the JustCode
recommendations and alterations

The process of automatic modification on the
class element

The process of automatic modification on the
method element

The process of automatic modification on the
property element

The process of automatic modification on the
struct element

The process of automatic modification on the
enum element

The process of automatic modification on the
private field element

Modification on the non-private field element in
naming warnings

Modification on the interface element in naming
warnings

Modification on the field element that starts with
underscore in naming warnings

StyleCop tool warnings results

Our tool warnings results

Apply StyleCop on MarsMission project
Apply our own tool on MarsMission project

Applying StyleCop on MarsMission project in
second run

Public field issue

81

82

83

83

84

85

86

86

87

90
90
91
91
92

93

www.manaraa.com

Figure 6.1:
Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Main menu of our SCA tool
Browse for folder dialog

Results after clicking on "Maintainability
Warnings"

The process of choosing a file

The obtained naming warnings and the
modification on the source code

Applying "Ordering Rules" on the source code

Applying "Layout Rules" on the source code

Vi

94
95
95

96
96

97
97

www.manaraa.com

LIST OF TABLES

Tables Title Page
Table 1.1: A sample SCA warning classification 4
Table 3.1: Spacing rules and examples 29
Table 3.2: Readability rules and examples 35
Table 3.3: Ordering rules 38
Table 3.4: Naming rules and examples 39
Table 3.5: Maintainability rules and examples 42
Table 3.6: Layout rules 44
Table 3.7: Documentation rules 46
Table 4.1: An overview of the projects 57
Table 4.2: Distribution the Chatters warnings on classes of warning 58
Table 4.3: Distribution the Design warnings on classes of warning 58
Table 4.4: Result from applying SCA tools on Chatters project 59
Table 4.5: Result from applying SCA tools on Design project 60
Table 4.6: Example code MarsMission and JustCode recommendation 63
Table 4.7: Example code MarsMission and StyleCop recommendation 64
Table 5.1: All rules of warnings and description 72
Table 5.2: Maintainability warnings extraction examples 74
Table 5.3: Naming warnings extraction examples 77
Table 5.4: Ordering and Layout warnings extraction examples 79
Table 5.5: Comparing between our own tool and other SCA tools 88
Vi

www.manaraa.com

API
DRE
EENOM
GUI
1UC

JIT
LENOM
LOC
NASA
NHCTMC
00
OOAD
SUT
SCA
SCC
SDLC

LIST OF ABBREVIATIONS

Application Programming Interface

Defect Removal Efficiency

Earliest Evolution Of Number Of Methods
Graphical User Interface

Interface Usage Cohesion

Just In Time

Latest Evolution of Number Of Methods

Lines Of Code

National Aeronautics and Space Administration
Non-homogeneous Continuous Time Markov Chain
Object Oriented

Object-oriented analysis and design

Software Under Test

Source Code Analysis

fine-grained Source Code Changes

Systems Development Life Cycle

Vil

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects
Prediction

by:
Qosai Mwateq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

www.manaraa.com

Traceability Enhancements on Source Code Analysis
Tools to Improve Software Defects Prediction

By:
Qosai Mwafeq AL-Zoubi

B.Sc. Computer Information Systems, Yarmouk University, 2010

A thesis submitted in partial fulfillment of the requirements for the
degree of Master of Computer Information Systems Department,
Yarmouk University, Irbid, Jordan

Approved by:
Bilal A. H. Abul-Huda

Chairman

Full Professor of Computer Information Systems, Yarmouk University
Izzat M. Alsmadi W s esas Co-supervisor

Associate Professor of Computer Information Systems, Yarmouk University

Ahmad A. Saifan ﬂ&:f; Member
Assistant Professor of Computer Infogmation Systems, Yarmouk University
Fawaz A. AL Zaghoul m Member
Full Professor of Computer Information Systems, The University of Jordan

MAY 05, 2013

www.manaraa.com

ACKNOWLEDGMENT

I would like to thank Allah for giving me the patience to work hard and overcome my

research obstacles.

Foremost, I would like to express my sincere gratitude to my advisors Professor Dr.
Bilal A. H. Abul-Huda and Dr. Izzat Alsmadi for the continuous support of my Master
study and research, for their patience, motivation, enthusiasm, and immense knowledge.
The guidance helped me in all the time of research and writing of this thesis. I could not

have imagined having a better advisors and mentors for my Master study.

Besides my advisors, I would like to thank the rest of my thesis committee: Dr. Ahmad
Saifan, and Professor Dr. Fawaz AL Zaghoul, for their encouragement, insightful

comments, and hard questions.

My thanks to my friends for their honest friendship, care, and for being kind to provide
help and support.

I am deeply and forever indebted to my parents and my wife for their love, support and

encouragement throughout my entire life.

Qosai AL_zoubi

MAY 05, 2013

Ol LAC U Zyl_ﬂbl

www.manaraa.com

TABLE OF CONTENTS

Contents Page
AKNOWLEDGEMENT |
TABLE OF CONTENTS 11
LIST OF FIGURES AV
LIST OF TABLES VII
LIST OF ABBREVIATIONS VIII
ABSTRACT IX
I. INTRODUCTION 1
1.1 Overview 1
1.2 Dealing with Quality Problems 1
1.2.1 Dynamic Testing 2
1.2.2 Metrics 2
1.2.3 Source Code Analysis Tools (static testing) 3
1.3 Sample of Source Code Analysis Tools 3
1.3.1 StyleCop 3
1.3.2 JustCode 4
1.3.3 FxCop 5
1.4 Problem Statement 5
1.5 Research Objective 6
1.6 Research Importance 7
1.7 Thesis Structure 8
II. RELATED WORK 9
2.1 Software Metrics and Class Change Proneness 9
2.2 Testing and Source Code Analysis Tools 14
2.3 Software Quality 17

www.manaraa.com

2.4 Maintenance 20

II1. STATIC CODE ANALYSIS TOOLS 23

3.1 Static Code Analysis Tools 23

3.1.1 Warnings 24

3.1.2 Errors 25

3.1.3 Information 25

3.2 What can Static Code Analysis Accomplish? 26

3.3 Analysis and Comparison: Source Code Analysis Tools 27

3.3.1 Analysis: Source Code Analysis Tools 27

3.3.1.1 StyleCop Tool 28

3.3.1.2 JustCode Tool 47

3.3.1.3 FxCop Tool 49

3.3.2 A Comparison between the Tools 51

IV. RESEARCH GOALS AND APPROACHES 54

4.1 Differences in the Results that come from each Tool for the 57
Same Source Code

4.2 Weaknesses of the Two Evaluated Tools 62

4.3 Inconsistency Issue 65

4.4 Tool Implementation 68

4.4.1 Requirements 68

4.4.2 Implementation 68

V. EXPERIMENTAL RESULTS AND ANALYSIS 71

5.1 Source Code Analysis Tool Warnings Extraction 71

5.1.1 Maintainability Warnings Extraction 73

5.1.2 Naming Warnings Extraction 76

5.1.3 Ordering and Layout Warnings Extraction 78

5.2 The Automatic Modification of Proposed Warnings on Tested 80

www.manaraa.com

Code

5.2.1 Maintainability Recommendations Automatic
Modification

5.2.2 Naming Recommendations Automatic Modification
5.3 Comparing Between Our Own Tool and Other SCA Tools
VI. HOW TO USE THE DEVELOPED TOOL
6.1 Maintainability Warnings Extraction
6.2 Naming Warnings Extraction
6.3 Ordering and Layout Warnings Extraction
VII. CONCLUSIONS AND FUTURE WORK
7.1 Conclusions
7.2 The Limitations and Weaknesses

7.3 Future Work

VIII. REFERENCES

81

&5

94
94
96
97
98
98
99
99
100

www.manaraa.com

Figures
Figure 4.1:

Figure 4.2:
Figure 4.3:

Figure 4.4:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:

Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:

Figure 5.14:

Figure 5.15:

LIST OF FIGURES

Title
Methodology phases

Generated warnings from StyleCop tool
Repeated warnings from StyleCop tool

Inconsistency between the JustCode
recommendations and alterations

The process of automatic modification on the
class element

The process of automatic modification on the
method element

The process of automatic modification on the
property element

The process of automatic modification on the
struct element

The process of automatic modification on the
enum element

The process of automatic modification on the
private field element

Modification on the non-private field element in
naming warnings

Modification on the interface element in naming
warnings

Modification on the field element that starts with
underscore in naming warnings

StyleCop tool warnings results

Our tool warnings results

Apply StyleCop on MarsMission project
Apply our own tool on MarsMission project

Applying StyleCop on MarsMission project in
second run

Public field issue

81

82

83

83

84

85

86

86

87

90
90
91
91
92

93

www.manaraa.com

Figure 6.1:
Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Main menu of our SCA tool
Browse for folder dialog

Results after clicking on "Maintainability
Warnings"

The process of choosing a file

The obtained naming warnings and the
modification on the source code

Applying "Ordering Rules" on the source code

Applying "Layout Rules" on the source code

Vi

94
95
95

96
96

97
97

www.manaraa.com

LIST OF TABLES

Tables Title Page
Table 1.1: A sample SCA warning classification 4
Table 3.1: Spacing rules and examples 29
Table 3.2: Readability rules and examples 35
Table 3.3: Ordering rules 38
Table 3.4: Naming rules and examples 39
Table 3.5: Maintainability rules and examples 42
Table 3.6: Layout rules 44
Table 3.7: Documentation rules 46
Table 4.1: An overview of the projects 57
Table 4.2: Distribution the Chatters warnings on classes of warning 58
Table 4.3: Distribution the Design warnings on classes of warning 58
Table 4.4: Result from applying SCA tools on Chatters project 59
Table 4.5: Result from applying SCA tools on Design project 60
Table 4.6: Example code MarsMission and JustCode recommendation 63
Table 4.7: Example code MarsMission and StyleCop recommendation 64
Table 5.1: All rules of warnings and description 72
Table 5.2: Maintainability warnings extraction examples 74
Table 5.3: Naming warnings extraction examples 77
Table 5.4: Ordering and Layout warnings extraction examples 79
Table 5.5: Comparing between our own tool and other SCA tools 88
Vi

www.manaraa.com

API
DRE
EENOM
GUI
1UC

JIT
LENOM
LOC
NASA
NHCTMC
00
OOAD
SUT
SCA
SCC
SDLC

LIST OF ABBREVIATIONS

Application Programming Interface

Defect Removal Efficiency

Earliest Evolution Of Number Of Methods
Graphical User Interface

Interface Usage Cohesion

Just In Time

Latest Evolution of Number Of Methods

Lines Of Code

National Aeronautics and Space Administration
Non-homogeneous Continuous Time Markov Chain
Object Oriented

Object-oriented analysis and design

Software Under Test

Source Code Analysis

fine-grained Source Code Changes

Systems Development Life Cycle

Vil

www.manaraa.com

ABSTRACT

Software testing is one of the most comprehensive phases in the software projects where it takes
a huge amount of time and resources. Testing however is not only the process that occurs after
the implementation executing the program looking for faults to fix them. There are many
supplementary testing activities that may occur within the testing stage or outside that lead to
the same goal as of testing to improve the developed software and reduce effort required to use
it, test it, maintain or update it. One of those supplementary testing activities is source code
analysis. Source code analysis focuses largely on warnings, not errors, where such warnings
indicate possible violation of naming standards or best practices. Such violation may in future
leads to errors and hence should be handed early. Source Code Analysis (SCA) tools such as:
MS StyleCop and JustCode have been developed to help developed areas in their code that
should be improved or modified to eliminate the display if warnings. Some of those tools are
integrated with programming languages environments and compilers. The main objective of this
thesis is to propose and develop an SCA tool that can improve some of the limitations in the
evaluated SCA tools. In order to achieve our main objective, we first conducted an evaluation or
assessment case study looking for limitations and weaknesses in the existing evaluated SCA
tools. Based on such initial assessment and comparison, a list of candidate requirements for the
new SCA tool is assembled. The developed or assembled tool can perform the following tasks:
Detect several categories of warnings, propose solutions to remove those warnings and
automatically apply those warnings if the user or the developer wants to do so. The main
contribution of this thesis is the development of a new SCA tool that can override some of the
limitations of the evaluated SCA tools. The new tool tried to take the good options of both tools
and bypass or avoid their limitations. Results showed that, based on the four warning categories
that we focused on, our tool showed better results in overcoming some of the inconsistency
problems or problems related to the automatic implementation of recommended corrections.

Key Words: source code analysis tools, static code analysis tool, maintainability warnings,
software testing, software quality.

IX

www.manaraa.com

Lealall

TP o s ol ;.\A‘)..d\ @J\\ ",A‘;__élﬂﬂ\ :"“gL_;\‘)A\ —iS io..n_l_a_,HQL_\Mw ‘),\3\ ‘)L._ua."'\

Eaall el) 3 0 g i s il A lead) o 8 G 14 S))yl g Bl el ;S 150 8

P8 SEE KRG JUNE- RS | oS X | T SN[S N| ISPNKLVN . YN PG, WO P S S S

d.._;\m_s'é‘)}__hd\f\\ EE ‘).\&\u; \ﬂ‘} \ﬂy\wua_@l\wu_jgaps_ﬂ\u;ﬂ\c)u

)

JsaY dda &3 Gy asa Ay A faad gl 4 e Jaldall g oo)l 0dl g caaladt WY g Uaall 3 gall
el dadI Y el ph e 5 0 IS S el el Jlad 5 Sy el ol gl o Ll
i laal) Jiadl ff Aa il Gl Bl S aiaa gl)y il ed A Jofle s
el) Sae Lgale ol ol iy o g il g celdadl) (a5 2 Bl w1 s e
kil deaclwdllens ki JustCode s StyleCop J—ia gl) J—las
U PSP TGS ' NS P FRNVEN. I ¥, S | UP'D SOS N - SO | [FCH WL 51| I G BN |
O e Y R al L L NS e BICE P PRSP LS
A O3 O Sy () SCA ol gy) 58 5 da g sl od gl it Il Cax I
A Al 50 i MY 5 Ly el L8 3@t sl (e SCA & ol (3 o 5l

s il 13 s e el 5ys SCA ol 8 el bl 85505l e o all oy

Mgl Laad il o a8l 8 A gl A 3) ol dhatall (e Al apand a il
Oe a8l 3aY) adat s 1L gl 5 Lpasaaay Loiad il 1Y) Lgide <o tial) (il b) o

Jsda ol 5 iy ondll (iamy oo Laliad il &l o) JBie il jd sl o el S50 o

Ds—hall s anaiall GL S cl ppa sl el WLl O dad) 3pdai g el sl el A5y
SCA 3ol Clasiul a4 s gyl od gl iyl Al wd)h g8 (3 el 13 iy o oy

ol il ol a1 8 JSL el G sla e s a8l Lr T il g s s

Baaall B1aY1 o5l L lals L giatlae 5 Lgagiity Liad il <l il g1 5 e day)Y Ll

Gl s rad G gl ol (i a1 gl A el cl 51 (e Jiadl 5)0 8 L gl L

O el o 3121

www.manaraa.com

CHAPTER ONE

INTRODUCTION

1.1 Overview

Through the software development life cycle a series of changes need to be
accomplished. These changes are required because of many reasons such as;
enhancement, adaption, and maintenance or fixing the program defects (Bieman, et a/,
2003). From these changes and results we can say the software is infinitely flexible
(Koru.2005). However, changes must be considered as major risk elements, since they
may impact time and cost (Koru & Liu, 2007). In addition, change-proneness of the

software may lead to specific important quality issues (Bieman, et a/, 2003).

The change history of software code provides useful information about the
evolution of programs. This information helps us to understand the overall picture of the
system evolution starting from design phase ending with maintainability phase (Al-

khiaty.2009).

Software quality is a serious issue to consider, since software is entering in all
life details starting from simple industries like children toys ending to industries like

airplane.

1.2 Dealing with Quality Problems
To deal with the quality problems we need to study how can we test and
measure the source code itself. The results from these studies and measurements

provide useful information that can help in solving such quality problems.

www.manaraa.com

1.2.1 Dynamic Testing

Dynamic testing or analysis focuses in accomplishing customer requests by
supporting all requirements and functionalities by the software as a final product

(Lochmann & Goeb, 2011).

Software testing tools are programs that try to find errors, defects, bugs, failures,
etc. in the evaluated software products. Those different terms are, sometime, different
based on the level and the nature of the errors. The errors are unexpected behavior of
the system. The defects refer to the many problems related to software products, either
external behavior or internal features, but a fault in a program which causes the program
to perform in an unintended or unanticipated manner. The failure that means the system
does not deliver a service as expected by it is user. The output of each test case in a
testing process is one of two: pass or fail. The designer of the test cases defines the
inputs for each test case along with expected outputs. On the execution, test cases are
executed and actual results are compared with expected results. For those failed test
cases (i.e. expected result is different from the actual result), a debugging process
further starts to see why those test cases produce incorrect outputs or results. Errors can
be syntax, semantic, functional, and non-functional. Errors may stop the compilation
process or may not and only cause different or unexpected behavior from those defined

by users.

1.2.2 Metrics

Studying class characteristics and identifying their attributes in terms of changes
is very useful in the maintenance process. Consequently, this will make project manager

and team to give more attention to the possibility of changes in classes during the

www.manaraa.com

project life cycle (Bieman, et al, 2003). Here where the importance of measuring

software metrics takes place.
1.2.3 Source Code Analysis Tools (static testing)

Many quality aspects can be identified by using metrics. Thus, software metrics

are tools to measure one or more code attributes (EKLOF.2011).

Source code analysis (SCA) tools are used to check the source code for attributes
such: number of lines of code or any other static metrics of the code. Examples of such
static metrics include: Lines Of Code (LOC), size, and complexity. It can be applied
after the code is written which means that it may help us to learn about the code and
possibly catch defects before testing phase. Although SCA cannot find all kinds of
defects, it can be considered as an efficient tool in terms of cost and time
(EKLOF.2011). SCA tools are usually applied automatically with the least amount of

effort and time from the users or testers side.

1.3 Sample of Source Code Analysis Tools
In this section, we will list some tool examples that are applied on the source

code specially those that we used in our experimental studies.
1.3.1 StyleCop

StyleCop is an open source static SCA tool from Microsoft that checks .NET
code for conformance of several design guidelines defined based on Microsoft's .NET
Framework (CodePlex.2011). StyleCop analyzes the code in order to apply a set of rules
which can be classified into several categories such as (CodePlex.2011): Naming,
maintainability, documentation, ordering, readability, spacing, and layout. Table 1.1

shows a sample of some warnings and their classification.

www.manaraa.com

Table 1.1: A sample SCA warning classification

Warnings Categories
The spacing around an operator symbol is incorrect. Spacing
The call to channel should only use the 'base.' prefix if the | Readability
item is declared virtual in the base class and an override is
defined in the local class. Otherwise, prefix the call with this
rather than base.
All using directives must be placed inside of the namespace | Ordering

Method names begin with an upper-case letter.

Naming Rules

The class must have an access modifier

Maintainability

A statement containing curly brackets must not be placed on
a single line. The opening and closing curly brackets must

each be placed on their own line.

Layout

The constructor must have a documentation header.

Documentation

1.3.2 JustCode

JustCode is another example of SCA tools. There are some JustCode features

that include (Telerik.2011): On-the-fly Code analysis, code navigation and search,

refactoring, quick fixes, coding assistant and hints. JustCode executes its code analysis

by applying custom inspections. There are several inspects that can be performed by

JustCode. Examples include (Telerik.2011): Identical if and else clauses, obsolete casts,

empty statements, assignments with no effect, unused private members, unused

parameters, variables, namespaces, or statements. Figure 1.1 shows a sample of SCA

output from JustCode.

public int Foo()
{

return "bar";

|// C#: An instance of type "string" cannot be returned by a method of type "int"|

}

Errors — by default Just Code underlines errors with a red line

www.manaraa.com

1.3.3 FxCop

FxCop is another example of SCA tools. FxCop is an application that resolves
assembly codes after the source codes are compiled, and notifies information about the
code assemblies, such as security improvements, possible design, performance and

localization (MSDN, 2013).

FxCop 1is intentional for class library developers. But, anyone making
applications that should conform to the .NET Framework best exercises will benefit.
Also, FxCop is useful as a pedagogical tool for people who are uncommon with the
NET Framework Design Guidelines or who are fresh to the NET Framework (MSDN,

2013).

FxCop is developed to be fully merged into the Systems Development Life
Cycle (SDLC) and is distributed as both a command-line tool (FxCopCmd.exe)
appropriate for integrated with Microsoft Visual Studio or usage as part of automated
build processes .NET as an exterior tool. And a fully distinguished application that has

a Graphical User Interface (GUI) (FxCop.exe) for interactive work (MSDN, 2013).

1.4 Problem Statement

Static source code analysis tools are software programs that are used to evaluate
programs statistically and evaluate certain characteristics based on predefined quality
standards. Unlike software testing where expected output will be (pass or fail) based on
the conformance of expected outcome with the actual outcome. In SCA, the output will

be one of three classes: error, warning or information.

Criteria are defined for what standard or typical program should be or should

have. Based on those standards, a subject code is evaluated depending on the level of

www.manaraa.com

conformance or violation of a standard, one of the three classes (i.e. error, warning, or

information) is defined to show some quality aspects of the evaluated software.

First, we have evaluated several selected free and commercial SCA tools for the
purpose of comparing, correlating and assessing the results. Our focus is on the warning
class of issues as it is considered as a vague class between errors and information where

many developers underestimate or ignore warning signs.

Second, we have evaluated the relations and the correlation between SCA
reported warnings. Extensive statistical analyses from all evaluated SCA tools are
conducted to evaluate the ability of warning reports by SCA tools to predict bugs or

defects.

Based on those relations from the different SCA tools, we have first listed the
important characteristics from all warning classes that were significant to bugs or

defects.

Moreover, we have proposed enhancements on SCA and developed a tool to
consider the major warning classes that showed high defect predictability values. The
last goal that we have performed is to evaluate the correlations between data from

software metrics tools and SCA tools.

1.5 Research Objectives
Based on the problem statement, we defined three major objectives that are

accomplished in this thesis:

e Extensively evaluate several selected free and commercial SCA tools for
the purpose of comparing, correlating and assessing the reported

information. Expected outcome has included statistical data from several

www.manaraa.com

open source evaluated projects that show all classes of warnings
collected from the selected SCA tools. Moreover, the similarities and

differences between the SCA tools will be shown.

e Evaluate the inconsistency of results and the kind of warnings that may
vary from one experiment to another given the same tool and tested
source code. Expected output have data and reports with inconsistency
between reported warnings in the tools when apply these tools more than

one run or test.

e Proposed enhancements on SCA and developed a tool to consider the
major warning classes that showed high defect predictability values.
Expected output is a tool or, for the least, a framework for the relevant
and important SCA warning information combined from all evaluated
SCA tools and possibly adding new warning classes discovered through
this thesis and evaluate the correlations between data from software

metrics tools and SCA tools.

1.6 Research Importance

Software quality tools are used to assess quality of software through all
development stages. However, there is a little public information about test evaluation
of the accuracy and value of the warning that are reported from some of these tools

(Ayewah, et al, 2007).

By using static SCA tools we can study the architecture of the source code
packages (EKLOF.2011). Therefore, we have tested several codes downloaded from

SourceForge. NET to evaluate the value of different warning messages in that code

www.manaraa.com

project and see if such warning messages can correlate with bug or defect data collected

from the source codes.

1.7 Thesis Structure

The following chapters of this thesis are organized as the following: Chapter two
presents related studies to software quality. Chapter three presents static code analysis
tools. Chapter four shows the research goals and approaches. Chapter five presents
experimental results and analysis. Chapter six describes how to use the proposed tool.

Chapter seven presents the conclusions and future work.

www.manaraa.com

CHAPTER TWO

RELATED WORKS

This chapter is a literature survey of the previous work that search in the history
of software metrics, software analyzing, and software maintainability in order to

enhance the quality and maintainability even after the product released.

It is divided into four sections starting with first section that describe software
metrics their importance as attributes of software, and their role in facilitating software
maintainability. Second section describes software quality. The Third section considers
testing and SCA tools. Finally fourth section is dealing with software maintainability

and changes as the final step in the software development life cycle.
2.1 Software Metrics and Class Change Proneness

Studying software metrics class characteristics and identifying their attributes in
term of changes is very useful in the maintenance process. Consequently, this will make
encourage project manager and his team to give more attention to the possibility of
changes in classes during the project life cycle (Bieman, et al/, 2003). Here where the

importance of measuring software metrics take place.

According to Girba et al. (2004), their approach depends on the changes in the
evolution of the Object Oriented (OO) software system by providing historical
measurement study. The study focuses on the change in the history of a class by
observing the change in the nature of methods in different versions, that means they
measure the change by using one main code attribute (number of methods) add or

remove method to certain class. Form the number of methods metrics can be derived

www.manaraa.com

another two different metrics, the Latest Evolution Of Number Of Methods (LENOM)
and the Earliest Evolution Of Number Of Methods (EENOM). By these two metrics the
change in size inside each class over the software history different versions can be
known and changes here focus only on the number of methods that added or removed

from each class over different releases.

Koru and Liu (2007) focus on change-prone classes by providing tree-based
model that shows the class characteristics, they test Pareto’s law for the open source
code programs which state that 80% of code changes are centered at 20% of the classes.
They mainly searched in how to identify change-prone classes and their characteristics
by trying to observe the change of set of static metrics of a group of products with
different releases of an open source project, they prove the validity and applicability of
Pareto’s law for open source programs, they also provide useful guidance in

development and maintenance of large-scale open source programs.

According to Basten and Klint (2009), finding and discovering the facts from a
source code is an important step while software analysis is done. Several experiments
are done and found that extracting facts from any source code then writing them in a
large wide of programming languages; it will lead to hard working and error prone.
Because of these reasons they developed a new technique which called DeFacto. It is

language-parametric analysis software for fact extraction from the software source code.

According to Bieman, et al. (2003), four research questions were treated. The
first research question was about visualization and identification of change-prone sets of
classes in an object-oriented framework. The second research question was to do with
differentiating change-prone clusters from local change-proneness of classes. Also this

method was displaying how to determine the degree to which classes are change-prone

10

www.manaraa.com

both in their interplays with others and locally. This method was applied to a
considerable case study. For this case study, in response to the third research question
that which modifies interplays between classes do not necessarily imitate functional
interplays in the resolve of the framework. This which can have a diversity of causes.
An example would be refinements of specific factors such as performance. Performance
refinements may trigger concurrent alterations in classes that otherwise do not react
with each other. On the other hand, in response to fourth research question, cluster
change-proneness versus local was visualized through the alter-architecture graph and
paralleled it to the design graph. We also differentiated between alter-prone clusters of
classes which did not include in patterns and those which are included. The
visualization was straightforward and simple and driven by the alteration measures that
were identified. Future work in this field involves the representation of other
measurements such as size of box symbolizing size of class, utilizing of color, and

covers of alter-architecture versus rational architecture.

According to Romano and Pinzger (2011), interfaces declare contracts that are
denoted to stay stable during the development of a software framework while the
concrete classes implementation (a subclass class can be instantiated that implements all
the missing functionality) is more likely to alter. This guide to another evolutionary
demeanor of interfaces paralleled to concrete classes. This behavior was experimentally
examined with the C&K metrics that are broadly utilized to estimate the implementation
quality of interfaces and classes. The outcomes of the study with two Hibernate projects
and eight Eclipse plug-in and indicate that, the Interface Usage Cohesion (IUC) metric
shows a more powerful connection with the number of fine-grained Source Code

Changes (SCC) than the C&K metrics when stratified to interfaces, also The IUC metric

11

www.manaraa.com

can ameliorate the performance of foretelling models in categorizing Java interfaces

into two categories, change-prone and not change-prone.

According to Romano et al. (2012), Anti-patterns have been defined to mean
“poor” solutions to resolve and perform problems. Previous researches have indicated
that classes impacted by anti-patterns are more change-prone than classes that did not
impact by anti-patterns. A deeper premeditation was provided into which anti-patterns
direct to which kinds of alterations in Java classes. The change-proneness of these
classes was analyzed taking in consideration 40 kinds of (SCC) derived from the
version control depository of 16 Java open-source frameworks. Classes impacted by
anti-patterns alter more repeatedly along the development of a framework; Classes
impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-patterns are
more probable to be altered than classes impacted by other anti-patterns in addition that,
specific anti-patterns lead to specific kinds of source code alterations, like as
Application Programming Interface (API) alterations are more probable to be shown in
classes impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-

patterns.

Shatnawi and Li (2008) investigated three publications of the Eclipse project and
detected that although several software metrics can still prognosticate class fault
proneness in three errors - acuteness categories, the thoroughness of the prognosis
minimized from publications to publications. Moreover, the Researchers detected that
the prognosis cannot be utilized to construct a software metrics paradigm to recognize
fault-prone classes with admissible accuracy. SHATNAWI‘s findings propose that as a
software develops, the utilize of certain usually utilized metrics to recognize which

classes are more prone to faults turns into increasingly complicated.

12

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

REFERENCES

Abraham, J. and Friedman, J. 2012. Building Confidence in the Quality and Reliability
of Critical Software. CrossTalk.

Al-Khiaty, Mojeeb 2009. Software evolution metrics for object-oriented software

changeability prediction. Department Computer Science King Fahd University
of Petroleum and Minerals, Saudi Arabia.

Ayewah, N., Pugh, W., Morgenthaler, J., Penix, J. and Zhou, Y. 2007. Evaluating Static
Analysis Defect Warnings on Production Software. In Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering (PASTE '07), San Diego, California, USA. Pp 1-8.
Basten, H. J. S and Klint, P. 2009. DeFacto: Language-Parametric Fact Extraction

from Source Code. Springer-Verlag Berlin Heidelberg. Pp 265-284.

Bernstein, A., Ekanayake, J. and Pinzger, M. 2007. Improving Defect Prediction Using

Temporal Features and Non Linear Models. In Proceedings of Ninth

international workshop on Principles of software evolution: in conjunction with

the 6th ESEC/FSE joint meeting (IWPSE '07). Dubrovnik, Croatia. Pp 11-18.

Bieman, J., Andrews, A. and Yang, H. 2003. Understanding Change-proneness in OO

Software through Visualization. In Proceedings of the 11th IEEE International

Workshop on Program (IWPC). Portland, OR, USA. Pp 44-53.

100

www.manaraa.com

Bieman, J., Jain, D. and Yang, H. 2001. OO Design Patterns, Design Structure, and
Program Changes: An Industrial Case Study. In Proceedings of IEEE

International Conference on Software Maintenance, Florence Pp 580—589.

Black, P., Kass, M., Koo, M. and Fong, E. 2011. Source Code Security Analysis Tool

Functional Specification Version 1.1. Software and Systems Division.

Canfora, G. and Cimitile, A. 2000. Software Maintenance. University of Sannio,

Faculty of Engineering at Benevento, Italy.

Deissenboeck, F., Juergens, E., Lochmann, K. and Wagner, S. 2009. Software Quality
Model: Purposes, Usage Scenarios and Requirements. In Proceedings of
Software Quality, 2009. WOSQ '09. ICSE Workshop on, Vancouver, Canada.

Pp 9-14.

Deissenboeck, F., Wagner, S., Teuchert, S. and Girard, J.-F. 2007. An Activity-Based
Quality Model for Maintainability. In Proceedings of 23rd IEEE International

Conference on Software Maintenance (ICSM). Paris, France. Pp 184-193.

Drake, T. 1996. Measuring Software Quality: A Case Study. Journal of IEEE Computer.

29 (11): 78-87.

Edberg, D., Ivanova, P. and Kuechler, W. 2012. Methodology Mashups: An Exploration
of Processes Used to Maintain Software. Journal of Management Information

Systems. 28 (2): 271- 304.

EKLOF, RICKARD 2011. Improving sofiware Development with Static Code Analysis

in a Traceable Environment. Master’s Thesis at Machine Design.

101

www.manaraa.com

Engelbertink, F, VOGT, H. 2010. How to save on software maintenance costs.

English, M., Exton, C., Rigon, I. and Cleary, B. 2009. Fault Detection and Prediction in
an Open-Source Software Project. In Proceedings of the 5™ International

Conference on Predictor Models in Software Engineering Article. New York,

USA.

Girba, T., Ducasse, S. and Lanza, M. 2004. Yesterday’s weather: Guiding early reverse
engineering efforts by summarizing the evolution of changes. In Proceedings of

the 20th IEEE International Conference on Software Maintenance, pp. 40—49.

Gomes, 1., Morgado, P., Gomes, T. and Moreira, R. 2009. An overview on the static
code analysis approach in software development. Tech. rep., Faculdade de

Engenharia da Universidade do Porto.

Gyimothy, T., Ferenc, R. and Siket, I. 2005. Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault Prediction. Journal IEEE

Transactions on Software Engineering. 31(10): 897-910.

Jones, C. 2012. Software Quality Metrics: Three Harmful Metrics and Two Helpful

Metrics.

Khaddaj, S. and Horgan, G. 2005. A Proposed Adaptable Quality Model for Software

Quality Assurance. Journal of Computer Sciences 1(4): 482-487.

Koru, G., and Liu, H. 2007. Identifying and characterizing change-prone classes in two
large-scale open-source products. Journal of Systems and Software. 80(1): 63—

73.

102

www.manaraa.com

Koru, G. and Tian, J. 2005. Comparing High Change Modules and Modules with the
Highest Measurement Values in Two Large-Scale Open-Source Products. /EEE

Transactions on Software Engineering. 31 (8): 625-642.

Kuhn, A., Ducasse, S. and G™irba, T. 2007. Semantic Clustering: Identifying Topics in

Source Code. Journal on Information Systems and Technologies 49(3): 230-243.

Lochmann, K. and Goeb, A. 2011. 4 Unifying Model for Software Quality. In
Proceedings of the 8th international workshop on Software quality (WoSQ’11),

Szeged, Hungary. Pp 3-10.

Lucia, A., Deufemia, V., Gravino, C. and Risi, M. 2010. An Eclipse plug-in for the
Detection of Design Patten Instances through Static and Dynamic Analysis. In
Proceedings of 26th IEEE International Conference on Software Maintenance

(ICEM). Timisoara, Romania. Pp 1-6.

Mahmood, Waqas and Akhtar, Muhammad 2010. Validation of Machine Learning and
Visualization based Static Code Analysis Technique. Master Thesis Computer

Science.

Riaz, M., Mendes, E. and Tempero, E. 2009. 4 Systematic Review of Software
Maintainability Prediction and Metrics. In Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measurement

(ESEM '09). IEEE Computer Society Washington, DC, USA. Pp. 367-377.

Romano, D. and Pinzger, M. 2011. Using source code metrics to predict change-prone
Java interfaces. In Proceedings of 27th International Conference on Software
Maintenance (ICSM'11), IEEE Computer Society, Washington, DC, USA. Pp

303-312.

103

www.manaraa.com

Romano, D., Raila, P., Pinzger, M. and Khomh, F. 2012. Analyzing the Impact of
Antipatterns on Change-Proneness Using Fine-Grained Source Code Changes.
In Proceedings of 19th Working Conference on Reverse Engineering, WCRE

2012, Kingston, ON, Canada.

Sharif, B. and Maletic, J. 2010. The Effects of Layout on Detecting the Role of Design
Patterns. In Proceedings of the 2010 23rd IEEE Conference on Software

Engineering Education and Training (CSEET '10). Pp 41-48.

Shatnawi, R. and Li, W. 2008. The effectiveness of software metrics in identifying error-
prone classes in post-release software evolution process. Journal of Systems and

Software. 81(11): 1868-1882.

Slaughter, S. and Delwiche, L. 1995. Errors, Warnings, and Notes (Oh My) A Practical

Guide to Debugging SAS Programs. University of California.

Vink, G. and BV, A. 2010. Static Code Analysis (SCA) Standardization Efforts &

Integration in the Software Development Flow.

Xiong, C, Xie, M. and Ng, S. 2011. Optimal software maintenance policy considering
unavailable time. Journal of Software Maintenance and Evolution: Research

and Practice. 23(1): 21-33.

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. and Vouk, M. 2006.
On the Value of Static Analysis for Fault Detection in Software. /[EEE

Transactions on Software Engineering 32(4): 240-253.

Zhou, Y. and Leung, H. 2006. Empirical Analysis of Object-Oriented Design Metrics
for Predicting High and Low Severity Faults. Journal IEEE Transactions on

Software Engineering. 32(10): 771-789.

104

www.manaraa.com

CODEPLEX, 2006. Project Hosting for Open Source Software. Retrieved October, 8,

2011 from the World Wide Web: http://stylecop.codeplex.com/.

MSDN, 2012. FxCop. Retrieved March, 10, 2013 from the World Wide Web:

http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx.

TELERIK, 2002. JustCode. Retrieved October, 15, 2011 from the World Wide Web:

http://www.telerik.com/products/justcode.aspx.

105

www.manaraa.com

http://www.tcpdf.org

‘e o* inghiall)l

& DARALMANDUMAH

FINPUTE | JaF U S PR Y [

Traceability Enhancements on Source Code Analysis Tools to Improve 1Ulgasll
Software Defects Prediction

Al Zoubi, Qosai Mwafeq t s, aJgoll

Abu Alhuda, Bilal A. H.. Al Smadi, Izzat M.(Advisor. Co-Advisor) ton>] Huailio

2013 VNI ST

20, ‘8990

1-105 1olxaall

743131 :MD ,3,

&Gol> Jlw, i Sgizoll £9)

English :aelll

iow>lo allw, ragolell as)all

ool asol> a0l

wwl=l poleg wlogleall LigleiSs s LW

s,V raJgall

Dissertations 1Ologleoll aclgd

wow =l zwoly (Olzo,dl (ogwlR acwris 1&uolgo

https://search.mandumah.com/Record/743131 ol

‘ ‘ Lbgaxo Sgazl gaos anghaioll s 2019 ©
plaziwlW 8slall 0ds dclb ol Joozi dliSoy abbgazo ,indl Jga> gaox Ol lode (il Bos> Llol 2o g3g0ll SVl (e sly d>lio 83lall 0in
_,|> 9|)_ou| d9,0.>- ylz.o| o Q\Ja> Cu i V9> (Es\.ig).'iSJW .l,g_».” 9| C;J)IJW &'9|9.o J.'.‘.o) CLLoug sl pete)),u.uJ| 9| JngJ| 9| éLuLdI &ioug Jnsd W|

Ol LAC U Zyl_ﬂbl

aoglaioll

www.manaraa.com

https://search.mandumah.com/Record/743131

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects
Prediction

by:
Qosai Mwateq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

www.manaraa.com

http://www.tcpdf.org

