
www.manaraa.com

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Through the software development life cycle a series of changes need to be

accomplished. These changes are required because of many reasons such as;

enhancement, adaption, and maintenance or fixing the program defects (Bieman, et al,

2003). From these changes and results we can say the software is infinitely flexible

(Koru.2005). However, changes must be considered as major risk elements, since they

may impact time and cost (Koru & Liu, 2007). In addition, change-proneness of the

software may lead to specific important quality issues (Bieman, et al, 2003).

The change history of software code provides useful information about the

evolution of programs. This information helps us to understand the overall picture of the

system evolution starting from design phase ending with maintainability phase (Al-

khiaty.2009).

Software quality is a serious issue to consider, since software is entering in all

life details starting from simple industries like children toys ending to industries like

airplane.

1.2 Dealing with Quality Problems

To deal with the quality problems we need to study how can we test and

measure the source code itself. The results from these studies and measurements

provide useful information that can help in solving such quality problems.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Through the software development life cycle a series of changes need to be

accomplished. These changes are required because of many reasons such as;

enhancement, adaption, and maintenance or fixing the program defects (Bieman, et al,

2003). From these changes and results we can say the software is infinitely flexible

(Koru.2005). However, changes must be considered as major risk elements, since they

may impact time and cost (Koru & Liu, 2007). In addition, change-proneness of the

software may lead to specific important quality issues (Bieman, et al, 2003).

The change history of software code provides useful information about the

evolution of programs. This information helps us to understand the overall picture of the

system evolution starting from design phase ending with maintainability phase (Al-

khiaty.2009).

Software quality is a serious issue to consider, since software is entering in all

life details starting from simple industries like children toys ending to industries like

airplane.

1.2 Dealing with Quality Problems

To deal with the quality problems we need to study how can we test and

measure the source code itself. The results from these studies and measurements

provide useful information that can help in solving such quality problems.

www.manaraa.com

 2

1.2.1 Dynamic Testing

Dynamic testing or analysis focuses in accomplishing customer requests by

supporting all requirements and functionalities by the software as a final product

(Lochmann & Goeb, 2011).

Software testing tools are programs that try to find errors, defects, bugs, failures,

etc. in the evaluated software products. Those different terms are, sometime, different

based on the level and the nature of the errors. The errors are unexpected behavior of

the system. The defects refer to the many problems related to software products, either

external behavior or internal features, but a fault in a program which causes the program

to perform in an unintended or unanticipated manner. The failure that means the system

does not deliver a service as expected by it is user. The output of each test case in a

testing process is one of two: pass or fail. The designer of the test cases defines the

inputs for each test case along with expected outputs. On the execution, test cases are

executed and actual results are compared with expected results. For those failed test

cases (i.e. expected result is different from the actual result), a debugging process

further starts to see why those test cases produce incorrect outputs or results. Errors can

be syntax, semantic, functional, and non-functional. Errors may stop the compilation

process or may not and only cause different or unexpected behavior from those defined

by users.

1.2.2 Metrics

Studying class characteristics and identifying their attributes in terms of changes

is very useful in the maintenance process. Consequently, this will make project manager

and team to give more attention to the possibility of changes in classes during the

www.manaraa.com

 3

project life cycle (Bieman, et al, 2003). Here where the importance of measuring

software metrics takes place.

1.2.3 Source Code Analysis Tools (static testing)

Many quality aspects can be identified by using metrics. Thus, software metrics

are tools to measure one or more code attributes (EKLÖF.2011).

Source code analysis (SCA) tools are used to check the source code for attributes

such: number of lines of code or any other static metrics of the code. Examples of such

static metrics include: Lines Of Code (LOC), size, and complexity. It can be applied

after the code is written which means that it may help us to learn about the code and

possibly catch defects before testing phase. Although SCA cannot find all kinds of

defects, it can be considered as an efficient tool in terms of cost and time

(EKLÖF.2011). SCA tools are usually applied automatically with the least amount of

effort and time from the users or testers side.

1.3 Sample of Source Code Analysis Tools

In this section, we will list some tool examples that are applied on the source

code specially those that we used in our experimental studies.

1.3.1 StyleCop

StyleCop is an open source static SCA tool from Microsoft that checks .NET

code for conformance of several design guidelines defined based on Microsoft's .NET

Framework (CodePlex.2011). StyleCop analyzes the code in order to apply a set of rules

which can be classified into several categories such as (CodePlex.2011): Naming,

maintainability, documentation, ordering, readability, spacing, and layout. Table 1.1

shows a sample of some warnings and their classification.

www.manaraa.com

 4

Table 1.1: A sample SCA warning classification
Warnings Categories

The spacing around an operator symbol is incorrect. Spacing

The call to channel should only use the 'base.' prefix if the

item is declared virtual in the base class and an override is

defined in the local class. Otherwise, prefix the call with this

rather than base.

Readability

All using directives must be placed inside of the namespace Ordering

Method names begin with an upper-case letter. Naming Rules

The class must have an access modifier Maintainability

A statement containing curly brackets must not be placed on

a single line. The opening and closing curly brackets must

each be placed on their own line.

Layout

The constructor must have a documentation header. Documentation

1.3.2 JustCode

JustCode is another example of SCA tools. There are some JustCode features

that include (Telerik.2011): On-the-fly Code analysis, code navigation and search,

refactoring, quick fixes, coding assistant and hints. JustCode executes its code analysis

by applying custom inspections. There are several inspects that can be performed by

JustCode. Examples include (Telerik.2011): Identical if and else clauses, obsolete casts,

empty statements, assignments with no effect, unused private members, unused

parameters, variables, namespaces, or statements. Figure 1.1 shows a sample of SCA

output from JustCode.

public int Foo()
{

return "bar";
 // C#: An instance of type "string" cannot be returned by a method of type "int"
}

 Errors by default Just Code underlines errors with a red line

www.manaraa.com

 5

1.3.3 FxCop

FxCop is another example of SCA tools. FxCop is an application that resolves

assembly codes after the source codes are compiled, and notifies information about the

code assemblies, such as security improvements, possible design, performance and

localization (MSDN, 2013).

FxCop is intentional for class library developers. But, anyone making

applications that should conform to the .NET Framework best exercises will benefit.

Also, FxCop is useful as a pedagogical tool for people who are uncommon with the

.NET Framework Design Guidelines or who are fresh to the .NET Framework (MSDN,

2013).

FxCop is developed to be fully merged into the Systems Development Life

Cycle (SDLC) and is distributed as both a command-line tool (FxCopCmd.exe)

appropriate for integrated with Microsoft Visual Studio or usage as part of automated

build processes .NET as an exterior tool. And a fully distinguished application that has

a Graphical User Interface (GUI) (FxCop.exe) for interactive work (MSDN, 2013).

1.4 Problem Statement

Static source code analysis tools are software programs that are used to evaluate

programs statistically and evaluate certain characteristics based on predefined quality

standards. Unlike software testing where expected output will be (pass or fail) based on

the conformance of expected outcome with the actual outcome. In SCA, the output will

be one of three classes: error, warning or information.

Criteria are defined for what standard or typical program should be or should

have. Based on those standards, a subject code is evaluated depending on the level of

www.manaraa.com

 6

conformance or violation of a standard, one of the three classes (i.e. error, warning, or

information) is defined to show some quality aspects of the evaluated software.

 First, we have evaluated several selected free and commercial SCA tools for the

purpose of comparing, correlating and assessing the results. Our focus is on the warning

class of issues as it is considered as a vague class between errors and information where

many developers underestimate or ignore warning signs.

Second, we have evaluated the relations and the correlation between SCA

reported warnings. Extensive statistical analyses from all evaluated SCA tools are

conducted to evaluate the ability of warning reports by SCA tools to predict bugs or

defects.

Based on those relations from the different SCA tools, we have first listed the

important characteristics from all warning classes that were significant to bugs or

defects.

Moreover, we have proposed enhancements on SCA and developed a tool to

consider the major warning classes that showed high defect predictability values. The

last goal that we have performed is to evaluate the correlations between data from

software metrics tools and SCA tools.

1.5 Research Objectives

Based on the problem statement, we defined three major objectives that are

accomplished in this thesis:

Extensively evaluate several selected free and commercial SCA tools for

the purpose of comparing, correlating and assessing the reported

information. Expected outcome has included statistical data from several

www.manaraa.com

 7

open source evaluated projects that show all classes of warnings

collected from the selected SCA tools. Moreover, the similarities and

differences between the SCA tools will be shown.

Evaluate the inconsistency of results and the kind of warnings that may

vary from one experiment to another given the same tool and tested

source code. Expected output have data and reports with inconsistency

between reported warnings in the tools when apply these tools more than

one run or test.

Proposed enhancements on SCA and developed a tool to consider the

major warning classes that showed high defect predictability values.

Expected output is a tool or, for the least, a framework for the relevant

and important SCA warning information combined from all evaluated

SCA tools and possibly adding new warning classes discovered through

this thesis and evaluate the correlations between data from software

metrics tools and SCA tools.

1.6 Research Importance

Software quality tools are used to assess quality of software through all

development stages. However, there is a little public information about test evaluation

of the accuracy and value of the warning that are reported from some of these tools

(Ayewah, et al, 2007).

By using static SCA tools we can study the architecture of the source code

packages (EKLÖF.2011). Therefore, we have tested several codes downloaded from

SourceForge.NET to evaluate the value of different warning messages in that code

www.manaraa.com

 8

project and see if such warning messages can correlate with bug or defect data collected

from the source codes.

1.7 Thesis Structure

The following chapters of this thesis are organized as the following: Chapter two

presents related studies to software quality. Chapter three presents static code analysis

tools. Chapter four shows the research goals and approaches. Chapter five presents

experimental results and analysis. Chapter six describes how to use the proposed tool.

Chapter seven presents the conclusions and future work.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 9

CHAPTER TWO

RELATED WORKS

This chapter is a literature survey of the previous work that search in the history

of software metrics, software analyzing, and software maintainability in order to

enhance the quality and maintainability even after the product released.

It is divided into four sections starting with first section that describe software

metrics their importance as attributes of software, and their role in facilitating software

maintainability. Second section describes software quality. The Third section considers

testing and SCA tools. Finally fourth section is dealing with software maintainability

and changes as the final step in the software development life cycle.

2.1 Software Metrics and Class Change Proneness

Studying software metrics class characteristics and identifying their attributes in

term of changes is very useful in the maintenance process. Consequently, this will make

encourage project manager and his team to give more attention to the possibility of

changes in classes during the project life cycle (Bieman, et al, 2003). Here where the

importance of measuring software metrics take place.

According to Girba et al. (2004), their approach depends on the changes in the

evolution of the Object Oriented (OO) software system by providing historical

measurement study. The study focuses on the change in the history of a class by

observing the change in the nature of methods in different versions, that means they

measure the change by using one main code attribute (number of methods) add or

remove method to certain class. Form the number of methods metrics can be derived

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 9

CHAPTER TWO

RELATED WORKS

This chapter is a literature survey of the previous work that search in the history

of software metrics, software analyzing, and software maintainability in order to

enhance the quality and maintainability even after the product released.

It is divided into four sections starting with first section that describe software

metrics their importance as attributes of software, and their role in facilitating software

maintainability. Second section describes software quality. The Third section considers

testing and SCA tools. Finally fourth section is dealing with software maintainability

and changes as the final step in the software development life cycle.

2.1 Software Metrics and Class Change Proneness

Studying software metrics class characteristics and identifying their attributes in

term of changes is very useful in the maintenance process. Consequently, this will make

encourage project manager and his team to give more attention to the possibility of

changes in classes during the project life cycle (Bieman, et al, 2003). Here where the

importance of measuring software metrics take place.

According to Girba et al. (2004), their approach depends on the changes in the

evolution of the Object Oriented (OO) software system by providing historical

measurement study. The study focuses on the change in the history of a class by

observing the change in the nature of methods in different versions, that means they

measure the change by using one main code attribute (number of methods) add or

remove method to certain class. Form the number of methods metrics can be derived

www.manaraa.com

 10

another two different metrics, the Latest Evolution Of Number Of Methods (LENOM)

and the Earliest Evolution Of Number Of Methods (EENOM). By these two metrics the

change in size inside each class over the software history different versions can be

known and changes here focus only on the number of methods that added or removed

from each class over different releases.

Koru and Liu (2007) focus on change-prone classes by providing tree-based

model that shows the class characteristics,

code programs which state that 80% of code changes are centered at 20% of the classes.

They mainly searched in how to identify change-prone classes and their characteristics

by trying to observe the change of set of static metrics of a group of products with

different releases of an open source project, they prove the validity and applicability of

development and maintenance of large-scale open source programs.

According to Basten and Klint (2009), finding and discovering the facts from a

source code is an important step while software analysis is done. Several experiments

are done and found that extracting facts from any source code then writing them in a

large wide of programming languages; it will lead to hard working and error prone.

Because of these reasons they developed a new technique which called DeFacto. It is

language-parametric analysis software for fact extraction from the software source code.

According to Bieman, et al. (2003), four research questions were treated. The

first research question was about visualization and identification of change-prone sets of

classes in an object-oriented framework. The second research question was to do with

differentiating change-prone clusters from local change-proneness of classes. Also this

method was displaying how to determine the degree to which classes are change-prone

www.manaraa.com

 11

both in their interplays with others and locally. This method was applied to a

considerable case study. For this case study, in response to the third research question

that which modifies interplays between classes do not necessarily imitate functional

interplays in the resolve of the framework. This which can have a diversity of causes.

An example would be refinements of specific factors such as performance. Performance

refinements may trigger concurrent alterations in classes that otherwise do not react

with each other. On the other hand, in response to fourth research question, cluster

change-proneness versus local was visualized through the alter-architecture graph and

paralleled it to the design graph. We also differentiated between alter-prone clusters of

classes which did not include in patterns and those which are included. The

visualization was straightforward and simple and driven by the alteration measures that

were identified. Future work in this field involves the representation of other

measurements such as size of box symbolizing size of class, utilizing of color, and

covers of alter-architecture versus rational architecture.

According to Romano and Pinzger (2011), interfaces declare contracts that are

denoted to stay stable during the development of a software framework while the

concrete classes implementation (a subclass class can be instantiated that implements all

the missing functionality) is more likely to alter. This guide to another evolutionary

demeanor of interfaces paralleled to concrete classes. This behavior was experimentally

examined with the C&K metrics that are broadly utilized to estimate the implementation

quality of interfaces and classes. The outcomes of the study with two Hibernate projects

and eight Eclipse plug-in and indicate that, the Interface Usage Cohesion (IUC) metric

e-grained Source Code

Changes (SCC) than the C&K metrics when stratified to interfaces, also The IUC metric

www.manaraa.com

 12

can ameliorate the performance of foretelling models in categorizing Java interfaces

into two categories, change-prone and not change-prone.

According to Romano et al. (2012), Anti-patterns have

that classes impacted by anti-patterns are more change-prone than classes that did not

impact by anti-patterns. A deeper premeditation was provided into which anti-patterns

direct to which kinds of alterations in Java classes. The change-proneness of these

classes was analyzed taking in consideration 40 kinds of (SCC) derived from the

version control depository of 16 Java open-source frameworks. Classes impacted by

anti-patterns alter more repeatedly along the development of a framework; Classes

impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-patterns are

more probable to be altered than classes impacted by other anti-patterns in addition that,

specific anti-patterns lead to specific kinds of source code alterations, like as

Application Programming Interface (API) alterations are more probable to be shown in

classes impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-

patterns.

Shatnawi and Li (2008) investigated three publications of the Eclipse project and

detected that although several software metrics can still prognosticate class fault

proneness in three errors - acuteness categories, the thoroughness of the prognosis

minimized from publications to publications. Moreover, the Researchers detected that

the prognosis cannot be utilized to construct a software metrics paradigm to recognize

fault- s a

software develops, the utilize of certain usually utilized metrics to recognize which

classes are more prone to faults turns into increasingly complicated.

www.manaraa.com

 13

Zhou and Leung (2006) utilized machine learning concept and logic regression

method to experimentally examine the advantage of metrics of Object-oriented analysis

and design (OOAD), particularly, a subset of the Chidamber and Kemerer metrics

suite- composed of six metrics numbered for each class - in prophesying error-

proneness when taking error acuteness into consideration. The findings depend on a

public domain National Aeronautics and Space Administration (NASA) data set, show

that 1) statistically, many of these Object-oriented design metrics are affined to class

error-proneness across fault acuteness, and 2) the prognosis capabilities of the examined

metrics extremely based on the acuteness of faults. More specifically, these Object-

oriented design metrics are capable to divine low acuteness errors in error-prone classes

better than high acuteness errors in error-prone classes.

Gyimothy et al. (2005) calculate the metrics of object-oriented design given by

Chidamber and Kemerer metrics suite to explain how error-proneness discovery of the

source software code of the electronic mail and open sourceWeb suite called Mozilla

Application Suite can be achieved. The researchers examined the values acquired

against the faults number detected in its error database referred to as Bugzilla

utilizing machine learning concept and logic regression method to prove and examine

the utility of these object oriented metrics for error-proneness prediction. The

researchers also paralleled the various versions metrics of Mozilla to realize and

examine how the divined error-proneness of the software altered during its development

period.

www.manaraa.com

 14

2.2 Testing and Source Code Analysis Tools

EKLÖF (2011) conclude that, developing complicated software productions

necessarily introduces flaws. Most of these defects can be grasped during testing phases

in the software development process, with the assistance of test cases or code reviews.

Furthermore, it is concluded that, static code analysis must be utilized pending the

implementation stage, during test analysis and during integration testing a type of

testing is used to test software interfaces and interactions that occur between the

software components.

According to Ayewah et al. (2007), the research focused on evaluating the

accuracy and value of warnings that the analysis tools usually report as a result. They

examined the FindBug as a software analysis tool that find defects in Java programs.

They discussed different kinds of warnings generated and their classifications in to false

positive, trivial bugs, and serious bugs. They also tried to answer many questions such

as why the static analysis tools defect true but not important bugs. They report their

experiments from integrating static analysis in to the software development process at

Google.

According to Zheng et al. (2006), defects and failure reports that are the result

of static analysis tools applied over three selected industrial programs were proposed,

they found that: Static analysis tools are good choice for detecting software faults and

defects in term of time. Static analysis tools are perfect for improving current versions

to new releases of software by focus on complicated, operational, and algorithmic

defects. From their statistical result analysis they found the number of defects can

indicate for the nature of the problem and these statistical tools can work together with

other fault-defect software for producing high quality software.

www.manaraa.com

 15

Lucia el at. (2010) using Eclips plug-in as a static analysis tool to extract the

design pattern from an object oriented source code, to perform design pattern recovery

and behavioral analysis and monitoring. According to Sharif and Maletic (2010)

recovering source code design pattern one of the most important steps for program

maintenance since it gives important information that could help in understanding the

semantic and logic together with system design which helps in system documentation

and system redesigning.

According to Black et al. (2010), no amount of correction and analysis can give

software product high levels of correctness, quality, security, or other serious properties.

Successful choices of platform, programming language, are more important than

reactive efforts. Notwithstanding code inspection or testing (dynamic analysis) has

benefits. Testing has the feature of check the behavior of the code in execution. By

contrast, only static analysis can be anticipated to detect malignant trapdoors.

Executable or binary code analysis averts suppositions about source code semantics or

compilation.

According to Mahmood et al. (2010), some programmers depend on software

testing stage to find existing errors and bugs in the software. The inherent obstacle of

testing that it endeavors at verification of software requirements rather than detecting

bugs and errors in the software. The same thing happened with the quality assurance of

the software which checks the software product under different status rather than

finding new bugs in the software. So there is a need to use security at early phase of

software development process. One of the most effective and popular method to fulfill

this goal is manual code review, but this mode is considered costly and needs

specialized knowledge in software implementation stage. One of the alternative and

most applicable methods is to perform static code analysis utilizing certain tool at an

www.manaraa.com

 16

early phase of software development process. Static code analysis method can

ameliorate performance as well as better usage of software resources with respect to

effort and time. Furthermore, there are several commercial as well as open source tools

used for this goal. Each one of these tools uses various technique and ways for static

code analysis. One of the latent issues with static code analysis method is the ability to

reduce the pseudo alarms, and to correctly distinguish the existing code-related

vulnerabilities.

According to Abraham et al. (2012), during the coding stage, engineering groups

either automatically or manually transform the design documents code, in other words,

the code is written in this phase. The application of techniques for testing and

verification in this stage is described code investigation and the objective is to generate

robust code by proving the absence of bugs such as execution errors. This can be

achieved with formal techniques combined with static code analysis programmers

can utilize static code analysis tools to test that the software is free of findable execution

errors. On the other hand, the author found that testing phases that are performed

during software development process may flop to find some bugs unless

comprehensive and tiring testing is used. Furthermore, many errors stay in the software

after the verification and testing processes were accomplished. These defects remain

because comprehensive testing is usually not practical. Other methods must be utilized

to remove remaining bugs, such as using of static code analysis tools to ameliorate

quality of code.

www.manaraa.com

 17

2.3 Software Quality

In quality problems we need to study how we can test and measure the source

code itself, the results from these studies and measurements provide useful information

helps in solving such quality problems.

According to Bieman et al. (2001), the focus was on assessing the software

design structure and other quality factors such as reusability, maintainability, testability,

and adaptability. They studied the architectural design of the class in order to predict

future class changes and analyze 39 commercial object oriented software systems by

using set of static metrics. They found that there are three kinds of classes that are the

most change-prone on the system over time, the large class, the class that inherited as a

super class, and the class that participate in the design patterns.

As illustrated by Lochmann and Goeb (2011), a common foundation aimed to

give information about disciplines and facilitates tracing a certain code, and global

framework describes all concepts related to software quality were searched. They

provide a general quality model in order to describe different attributes related to

quality, relying to activities related to quality such as maintainability and usability, the

model can be integrated with all standard concept, quality models, guidelines, and

statics code checkers rules. They showed that the quality model could describe the

interrelations of disciplines such as software requirements and test reaching to software

quality.

As illustrated by Deissenboeck et al. (2007) the quality model criticisms

analyzed them as a result of unclear definition of quality models and describe their

purposes and usage scenarios. Critique of current models was used as general

www.manaraa.com

 18

requirements to evaluate, and improve the existing models or even develop new

enhanced models from scratch. They introduced three clear definitions for quality model

as a concept to reflect the importa

model: a model to describe, assess, and predict quality. Quality Meta model: a model

with rules needed to build a specific quality models. Quality modeling framework: a

framework define, evaluate and improve quality.

As illustrated by Deissenboeck et al. (2009) they propose 2-dimentions model of

maintainability that to which studies the system from maintainability perspective. They

separate the maintenance activities from the system properties to identify the quality

criteria and allow justifying their independencies, which helps to view the quality model

in a structures design used in industrial project environments. Their model construction

based on an explicit quality Meta model, which made the system more systematic and

preciseness. The applicability of the model is confirmed by applying the model over a

case study, they created a model of the maintainability of MATLAB Simulink models

to use it frequently in model-based development of embedded systems.

As illustrated by Khaddaj and Horgan (2005), the traditional quality models

used hierarchical techniques with restricted domain of factors that define quality, so

they introduced a new model for handling software quality confirmation that dealing

with the problems of old approaches and come with new factors of quality as common

measurement instrument that can determine and analyze quality factors in technological

enhancement way. Their approach was more flexible, since it can be extended to satisfy

user requirement and add more details derived from the customer need.

According to Kuhn et al. (2006), they presented a new technique called

Semantic Clustering based on Latent Semantic Clustering and Indexing to gather the

www.manaraa.com

 19

lingual information in the source code that use a same vocabularies. After that, they

interpreted them in order to detect and discover what is the notion of the source code

and to support program understanding by retrieve the topics including the same

vocabulary. Simply, this process is done by a number of steps, beginning by comparing

all topics together then they tied them by links. According to the first two steps, tables

are drawn automatically according to retrieval data. After that, visualization is applied

over the system to describe how they are divided.

According to Drake (1996), a project requires actual measures from actual data.

If software productivity factors were not really understood, then it will not be known

how to ameliorate the development processes. None of process "standards" the present

when achieved for the proper reasons, will turn on established rules and demeanor

patterns and will turn the status in quo. More significantly, it will turn on the

perceptions and brains of people. The significance of the people must be recognized in

the process. Higher productivity and amended quality can be accomplished by tapping

their concealed strengths. The suitable use of statistical and metrics techniques can help

to supply support to the software development teams and measure progress , whilst at

the same time improving quality , alleviating risk, and minimizing cost.

According to Jones (2012), In order to create righteous economic patterns of

software maintenance, development, and quality control it is imperative to have

rigorous measurements that use rigorous metrics. The industry cannot endure the

errors and gaps of poor metrics like as technical debt, cost per defect, and lines of code.

The integration of function point metrics integrated with Defect Removal Efficiency

www.manaraa.com

 20

metrics (DRE) can view the actual cost of quality and clarify the fact that obtaining high

quality is the most cost-effective method to construct software.

Engelbertink (2010) was presented six methods to economize software

maintenance costs. These are often relied on experimental studies. The Omnext CARE

idea was described, a workable solution for establishing continual incremental

amelioration and so decreasing software maintenance costs. Moreover, the unique state-

of-the-

2.4 Maintenance

Maintainability one of six characteristics refers to quality, analysis, test, and

check stability and changeability of quality models. It is one of the major software

costs that concerned during the development life cycle of the software (Al-khiaty.2009).

As illustrated by Riaz et al. (1993), measuring and assessing the quality metrics

of maintainability were their research interests, they introduced a clear definition to

distinguish between software maintenance, and software maintainability as maintenance

vs. maintainability reflect the process vs. quality metrics which in turn reflect the cost

vs. quality metrics measurement respectively. Their focus was on the maintenance

because of its impact in improving and avoiding future defects, and its role in reducing

the total cost and time consuming during the whole software development life cycle

stages. To predict and distinguish future improvement activities they used the

systematic review to generate set of questions that could help to provide more details

about the whole domain and suggest that there is a relationship between the software

maintainability estimation and models.

According to English et al. (2009), maintainability is one of the most important

factors that helps to save time and resources in the long term periods, they studied

www.manaraa.com

 21

maintenance by examine part of source code of any program that expected to have

defects so it need to change. They did experimental study to have information about

number, different faults and the desired changes that need to be applied on part of code.

They use both Par

identifying classes that most likely to change, respectively.

According to Bernstein et al. (2007), a new technique discovered to predict the

defects in any software in order to write bug-free software. They discussed that the

temporal features of the data is able to prediction performance, also they used the non-

linear models to discover the relationship between the defects and features which it may

hidden. As a result of maintain the reliability of the prediction. They depended on an

automated feature selection algorithm called tree-based induction, in order to predict the

location of defect, and to predict a number of bugs.

According to Canfora and Cimitile (2000), Object technology has become

growingly common in these days and the most of the new frameworks are presently

being evolved with an object-oriented technology. Among the essential reasons for

using an object-oriented technology is consolidated modifiability, and thus simpler

maintenance. This is obtained through notions such as dynamic binding, classes,

inheritance, information hiding, and polymorphism. But, there is no enough data that

experimentally show the effect of object-oriented technology on maintenance.

According to Edberg et al. (2012), many sides of software maintenance

operations are badly understood in spite of the fact that the plurality of resources for

showed that single developer perceptions and differences have a far greater effect in the

selection of a maintenance methodology than is the situation for the selection of a

www.manaraa.com

 22

formal (initial) software development methodology. Participants in the study

systematically profited private maintenance methodologies that were unified from

elements of various initial development methodologies. Finding that initial education

and training robustly impacted the expansion of these personal maintenance techniques

(methodologies).

Xiong et al. (2011) looked into the stochastic demeanors of maintenance

activities and operation of software frameworks. The demeanors are depicted under the

frame of the Non-homogeneous Continuous Time Markov Chain (NHCTMC). Then the

cost brought in by nonexistent time is examined. Discussing how to minimize the effect

of unavailability by the optimality of maintenance policy is resolved and altering

maintenance policy. A cost model is suggested for the objective of quantitative analysis.

In addition, rate-based simulation is performed to simplify the research.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 23

CHAPTER THREE

STATIC CODE ANALYSIS TOOLS

3.1 Static Code Analysis Tools

Static SCA tools are software programs that collect information from the source

code with the goal of trying to verify all potential tracks within a software program

without executing the program. Certain characteristics will be statistically evaluated,

based on predefined quality standards. A static code analysis tool should be able to

efficiently locate faults such as under flow or over flow in an arithmetic operation, out-

of-bounds array accesses, memory allocation errors and conflict code fragments that

may go unnoticed during dynamic tests.

In the phases of software development can apply static code analysis in the early

phases. And can be applied to the code are incomplete and incorrect, as there are no test

cases must be. Unlike software testing where expected output will be (pass or fail)

based on the conformance of expected outcome with the actual outcome. In SCA tools,

the output will be one of three classes: error, warning or information.

In computer technology, a software bug is a fault in a computer program that

causes an unexpected result or blocks it from operating properly. Some bugs may only

impact a program under specific situations. Others may be more critical and cause the

software code to be unsteady or even unusable. A simple failure in the code can cause

serious problems. For example, if the programmer fortuitously wrote a code to add two

numbers to each other when it should multiply them, the remnant of the code will give a

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 23

CHAPTER THREE

STATIC CODE ANALYSIS TOOLS

3.1 Static Code Analysis Tools

Static SCA tools are software programs that collect information from the source

code with the goal of trying to verify all potential tracks within a software program

without executing the program. Certain characteristics will be statistically evaluated,

based on predefined quality standards. A static code analysis tool should be able to

efficiently locate faults such as under flow or over flow in an arithmetic operation, out-

of-bounds array accesses, memory allocation errors and conflict code fragments that

may go unnoticed during dynamic tests.

In the phases of software development can apply static code analysis in the early

phases. And can be applied to the code are incomplete and incorrect, as there are no test

cases must be. Unlike software testing where expected output will be (pass or fail)

based on the conformance of expected outcome with the actual outcome. In SCA tools,

the output will be one of three classes: error, warning or information.

In computer technology, a software bug is a fault in a computer program that

causes an unexpected result or blocks it from operating properly. Some bugs may only

impact a program under specific situations. Others may be more critical and cause the

software code to be unsteady or even unusable. A simple failure in the code can cause

serious problems. For example, if the programmer fortuitously wrote a code to add two

numbers to each other when it should multiply them, the remnant of the code will give a

www.manaraa.com

 24

wrong result. Next sections are description of the three class of information that is

provided by SCA tools.

3.1.1 Warnings

 According to Slaughter and Delwiche (1995), Warning messages from diagnostic

messages warns construction that cannot be wrong, but that is decisive, or indicate that

there is potential for future errors in the program. Warnings are less terrible than errors.

Although some professional programmers, try to decrease the number of warnings,

sometimes the situations that result in warnings are not serious. Other situations may

indicate serious problems which, if unfixed, will render the results valueless. All

warnings should be checked to judge their seriousness.

In other words, warning is an issue with your program, happened when the compiler

hits a statement that is valid but probably not what you meant. Warnings are not errors -

the compiler can ignore them- and do not break compilation or block the compiler from

generating code.

Although the warnings should not be ignored, they are not something serious

enough to actually prevent the program from compiling. Usually, compiler warnings are

hints that something might go erroneous at runtime. A typical mistake might be made

that the compiler knows about. A popular example is using t

tement. Other example is using

variables that might not have been initialized.

Nevertheless, compiler warnings aren't going to halt the program working

(unless program is told to treat warnings as errors), thus they are perhaps a bit less

complicated than errors. In other words, the warning is a code statement looks suspect

www.manaraa.com

 25

and can be ignored. However, warnings usually indicate that a code statement is

incorrect with the input file.

3.1.2 Errors

According to Slaughter and Delwiche (1995), errors are program statements that

are definitely wrong, and that deny the compiler from finishing the compilation of the

compiled program. These include lines or statements that are usually missing

semicolons, spelling errors, or incorrect syntax. For instance, Lines of code in Java or

C# should have (;). The compiler errors will always contain a line number at which the

error was discovered. These types of syntax errors are called compiler errors.

There is another type of errors called Linker errors. Unlike compiler errors,

errors are problems with the link determine the definition of structures, global variables,

functions, or categories that were used, but did not know, in the source code file.

Mostly, we will be link errors of the form "could not find a definition of X".

Generally, the compilation process will start with a chain of compiler warnings

and errors, once all of them have been fixed, and then linker errors will be presented.

3.1.3 Information

Information messages are messages that will be generated when a function or a

variable is declared while they are not used in the program. These messages inform

about the status of the program such the number of records.

www.manaraa.com

 26

3.2 What can Static Code Analysis Accomplish?

According to Vink and BV (2010), the key reasons for using static code analysis

are twofold. The first is to minimize the costs and time of developing source code. The

second is to increase revenue and decrease business risk by supplying reliable and

responsible software to customers. Static code analysis is used to forcefully direct the

code in a way as to be readable, less prone to mistakes and reliable on future tests. This

also impacts the verification of the source code after it is ready, minimizing the number

of errors found in additional implementations of the source code.

According to Gomes et al. (2009), static code analysis is used to analyze of

computer software which is accomplished without the execution of the codes, as

contrary to dynamic analysis or testing - codes. Commonly, the analysis of computer

software is performed on some version of the object code and in the other states on the

source code. Programmers make little faults all the time, like an additional parenthesis

here, a missing semicolon there, and so on. Most of the time these errors are illegal and

will be rejected by the compiler. The compiler observes the error then the

programmer repairs the code mistakes , However, to most safety vulnerabilities this is

a rapid scenario of feedback and response which is not usually applied.

Static code analysis is used to recognize many common programming problems

before a software program is released. Static analysis endeavors to check the text of a

code statically, without trying to execute it. In theory, static analysis tools can check

either a source code of a

According to Gomes et al (2009), static code analysis can be done using

automated tools or manual reviewing. Static analysis tools are more efficient than

manual reviews because they are faster. Programs can be evaluated much more

www.manaraa.com

 27

repeatedly, and some of the knowledge is encapsulated in the static code analysis tools

required to perform this kind of code analysis.

Programmers may depend on a compiler to apply the finer points of

programming language syntax. A perfect static analysis tool can effectively apply the

tool without being conscious of the finer points of the more hard to detects bugs.

Moreover, examining process for bugs is complicated because they often occur in hard-

to-reach cases or exist in uncommon circumstances.

Static analysis tools can look more black corners of the program with fewer

hubbubs than dynamic code analysis, which requires the implementation of the code.

On the other hand, static analysis has also the possibility of their application before the

source code up to the level of completion of writing the code can test the glory of the

application.

3.3 Analysis and Comparison: Source Code Analysis Tools

In this section, three SCA tools specially designed for Microsoft .NET

programming language will be analyzed. These are FxCop, StyleCop, and JustCode.

FxCop and StyleCop are Open-source products, but JustCode is a commercial product.

3.3.1 Analysis: Source Code Analysis Tools

A key difference between StyleCop and FxCop is that StyleCop analyzes C#

source code, and cannot analyze another .NET language source codes. On the other

hand, FxCop works for any .NET programming language after the source codes are

compiled. StyleCop is interested in how C# source code looks, provides programmers

with an efficient way to follow C# coding standards, focused on code style, comments,

naming convention, spacing, etc.

www.manaraa.com

 28

FxCop focuses on how the .NET framework classes are used. It concentrates on

the Microsoft Design Guidelines and analyzes the code seeking possible security and

performance issues. In other words, FxCop and StyleCop are related; they complement

each other, because each tool executes some different code analysis tasks. Despite their

different rules, StyleCop can be compared with FxCop in that both are used as SCA

tools.

3.3.1.1 StyleCop Tool

StyleCop is an open source static SCA tool for Visual Studio produced by

Microsoft that checks C# source code to determine if it is correctly formatted. StyleCop

analyze the code in order to enforce a set of styles and consistency rules which are

classified into the following categories:

Spacing

Readability

Ordering

Naming

Maintainability

Layout

Documentation

StyleCop includes both command line and graphical user interface versions of

the tool. It is also possible to create new StyleCop rules to be used.

www.manaraa.com

 29

Spacing Rules

Spacing rules apply spacing requirements around symbols and keywords in the

source code. Table 3.1 shows examples of spacing rules.

Table3.1: Spacing rules and examples
Warnings Example of code

The spacing around the keyword 'for' is
invalid.

for(int row = 0; row < bitmap.Height; row ++)

Invalid spacing around the semicolon. Public CommonUtils.HistoryListInputHistory {get;
set;}

The spacing around the symbol '!=' is
invalid.

if(oBuffer!=null)

The documentation header line must start
with a single space.

///loop through all connected chatters and invoke
their

The comment must start with a single
space

//for WPF Dispatcher

The preprocessor type keyword must not
be preceded by a space

region InteropServices.Marshal mathods

Invalid spacing around the opening
parenthesis

if(oBuffer!=null)

Invalid spacing around the closing
parenthesis

if(hDIB!=(int)0)

Invalid spacing around the opening square
bracket

dsBooks.Tables ["Authors"].DefaultView

Invalid spacing around the closing square
bracket

Trim(new char[]{'\"'})

Invalid spacing around the opening curly
bracket

Trim(new char[]{'\"'})

Invalid spacing around the closing curly
bracket

Trim(new char[]{'\"'})

Invalid spacing around the closing attribute
bracket

[DllImport("olepro32.dll", CharSet
=CharSet.Unicode, ExactSpelling=true)]

Invalid spacing around the negative sign (Filename,-1,null,null,0)

www.manaraa.com

 30

The code contains multiple spaces in a row.
Only one space is needed

Application.StartupPath + "\\errors.log"

Tabs are not allowed. Use spaces instead currentSession.Abort();

All warnings in the Table 3.1

spacing aroun This warning is caused when the spacing

around a C# keyword is improper. There are some C# keywords that must always be

followed by a single space, compared with other keywords must not be followed by any

space.

These C# keywords must always be followed by a single space: stackalloc,

catch, foreach, from, group, if, where ,in, fixed, for, into, join, let, lock, return, select,

orderby , switch, throw, using, while, yield. Compared with following keywords must

not be followed by any space: default, checked, sizeof, unchecked, typeof. The new

keyword should be followed by a space or not depend on the code sentence, always

should be followed by a space unless it is used to create a new array. In this case no

space should be between the opening array bracket and the new keyword.

On the other hand, the second warning is Invalid spacing around the

This warning is resulted from an incorrect spacing around a semicolon.

Unless the semicolon is the last character on the code line, A single space should be

preceded by any whitespace. In order to solve a contravention of this rule, the

www.manaraa.com

 31

semicolon should not proceeded by any space, and it should be followed by a single

space.

According to the following warning in from Table 3.1

keyword must not be preceded by a space . This warning is caused when a C#

preprocessor-type keyword is preceded by a space. For example:

region InteropServices.Marshal mathods

The warning Invalid spacing around the opening parenthesis

an incorrect space for an opening parenthesis inside a C# code statement. If an opening

parenthesis is the first character on the line, or it is preceded by certain C# keywords

such as while, if, or for, it should be preceded by any whitespace. When an opening

parenthesis is preceded by an operator symbol inside an expression, a whitespace is

permitted to be followed by an opening parenthesis

parenthesis inside a C# code statement.

A closing parenthesis should never be preceded by whitespaces. In most cases, a

closing parenthesis should be followed by a single space, unless the closing parenthesis

comes at the end of a cast, or the closing parenthesis is followed by certain types of

operator symbols, such as positive signs, negative signs, and colons.

The warning Invalid spacing around the opening square bracket is resulted

from incorrectly spaced for an opening square bracket inside a C# code statement; then

Whitespace is preceded or followed by an opening square bracket inside a statement. A

whitespace must be followed by an opening square bracket just in these suitcases, if it is

the first or last character on the line; moreover, when the spacing around a closing

www.manaraa.com

 32

t character on the line, a

space must be followed by a closing square bracket.

The warning Invalid spacing around the opening curly bracket is resulted from

incorrectly spaced for an opening curly bracket inside a C# element, when this occurs a

single whitespace must all the time become before An opening curly bracket,

nevertheless, a single whitespace must be followed by An opening curly bracket in two

conditions: if it is the first character on the line, or when an opening parenthesis is

followed by An

between the parenthesis and the curly bracket. A space must be always preceded by an

opening curly bracket, but if an opening curly bracket is the last character on the line, a

space must not be preceded by an opening curly bracket.

The warning A closing curly bracket within a C# element is not spaced

correctly is resulted from a wrong spacing around a closing curly bracket, when this

occurs a singular space must all the time be preceded by a closing curly bracket;

however, a space must not be preceded by a closing curly bracket if and only if a

closing curly bracket is the last character on the line, or if a comma, a semicolon, or a

closing parenthesis is preceded by a closing curly bracket.

The warning Invalid spacing around the closing attribute bracket. is resulted

from a wrong space around a closing attribute bracket. If the bracket is the first

character on the line, a space must be followed by a closing attribute bracket.

The warning Invalid spacing around the negative sign is resulted from a

wrong space around a negative sign. If a negative sign is the first character on the line

preceded by an opening square bracket, or a parenthesis, a single space must not all the

time be followed by a negative sign.

www.manaraa.com

 33

The warning Tabs are not allowed. Use spaces instead is resulted from

consisting of a tab character in the code. Based on the editor that are used to display the

code, the extent of the tab character can be alternated, and as a result for that Tabs have

not to be used inside C# code, and this is one of the reasons that can cause spacing and

indexing of the code differ from the original intention of the developers, and in some

cases the reader may be seen the code difficult. Intended for these reasons Tabs should

not be used and are not permitted, and four spaces should be contained in every

indentation level. This will pledge that the code appears similar, and no affair which

editor is being used in order to display the code.

is resulted from not

started a single-line comment in a C# code file with a single space, and at what time a

single-line comment does not begin with a single space, the contravention of this rules

happen. For example:

private void Method1()

 {

//for WPF Dispatcher

// for WPF Dispatcher

 }

The comments should start with a single space after the forward slashes:

private void Method1()

 {

//for WPF Dispatcher

//for WPF Dispatcher

 }

www.manaraa.com

 34

Exclusion to this rule occurs when the comment is being used to comment out a line of

the code program. In this case, the space can be deleted if the comment starts with four

forward slashes to denote out-commented code. Such as:

private void Method1()

 {

////int x = 2;

////return x;

 }

is resulted from an

incorrect space around an operator inside a C# code file, these operators kinds have to

be cuddled by a single space on one of the sides: arithmetic operators, relational

operator, logical operators, lambda operators, conditional operators, colons, assignment

operators, and shift operators. For example:

(Filename,-1,null,null,0)

caused when a code line within a documentation header does not begin with a single

space. For example:

///loop through all connected chatters and invoke their

The header lines should start with a space after the three leading slashes:

/// loop through all connected chatters and invoke their

www.manaraa.com

 35

Readability Rules

These types of Rules are used to guarantee that the code is readable and well-

formatted. Table 3.2 shows examples of readability rules.

Table3.2: Readability rules and examples
Warnings Example of code

Calls to members from a base class should not return base.Channel.BeginJoin(name, callback,

asyncState)

Prefix local calls with this AbortProxy()

The code contains an extra semicolon };

A line may only contain a single statement catch (TimeoutException) { }

A comment may not be placed within the

bracketed statement

else // small flake

 {

All method parameters must be placed on the

same line

(Settings.Option.LogFileName,

FileMode.Append)

The comment is empty. Add text to the

comment or remove it

//

Use the built-in type alias 'int' rather than Int32

or System.Int32.

Int32[] baudRates

Use string.Empty rather than "" (titleAttribute.Title != "")

caused when a C# line code includes a comment between the opening curly bracket and

the declaration of the statement. For example:

else // small flake
 {

www.manaraa.com

 36

The comment can be placed or within the body of the block:

else
 {

// small flake

Or can be placed above the statement:

// small flake
else
 {

single line Within a C# code contains more than one statement. For example:

catch (TimeoutException) { }

So that, each statement must begin on a new line.

code contains an additional semicolon. For example:

 };

This results in an empty statement in the code.

s not include an implementation

or override of the member (function). For example:

return base.Channel.BeginJoin(name, callback, asyncState)

is resulted when a call to an instance

member of a child class or a parent class that is involved in a C# code doesn't start with

'this'. Elimination to this rule occurs at the time there is a local (child) take priority over

the parent class element, and the code means to identify the parent class element

www.manaraa.com

 37

directly, avoiding the local (child) priority over the parent class element. In this

.

the parameters to a C# declaration or indexer or method call each on a separate line or

are not all on the same line. For example:

(Settings.Option.LogFileName,

 FileMode.Append)

The parameters must all be placed on the same line:

(Settings.Option.LogFileName,FileMode.Append)

caused when the C# code includes a C# comment which does not contain any comment

text.

contains a hard-coded empty string. For example:

(titleAttribute.Title != "")

This will cause an empty string was embedded into the compiled code by the compiler.

So that rather than using an empty string, use the static string.Empty field to represent

it, like this:

(titleAttribute.Title != string.Empty)

-

is caused when the code uses one of the basic C# types anywhere in the code, but does

not use the built-in alias for the type. For example:

Int32[] baudRates

www.manaraa.com

 38

Rather than using the fully-qualified type name, the alias for this type should always be

used:

int[] baudRates

Ordering Rules

These types of Rules are used to apply a standard ordering scheme for code

program contents. Table 3.3 shows ordering rules.

Table3.3: Ordering rules
Warnings

All using directives must be placed inside of

the namespace

All methods must be placed after all fields

All private fields must be placed after all

public fields

All constant must be placed before all non-

constant

Using directives must be sorted alphabetically

by the namespaces

must be classified alphabetically through the

alphabetically not prepared. Organizing the used orders alphabetically has the ability to

make the code easier to read and cleaner.

-

when a constant field is placed below a non-constant field. Non-Constants fields must

be placed below constants fields.

www.manaraa.com

 39

A get accessor appears after a set accessor is resulted from the

appearance of a set accessor before A get accessor inside indexer or a property. An

infringement of this rule happens when a set accessor is located before a get accessor

inside indexer or a property.

rectives must be placed inside is

resulted when a C# using directive or a using-alias directive comes into view outside the

elements of namespace; if not the C# code involve any elements of a namespace.

There are slight dissimilarities among insertion using directives outside of the

namespace, rather than inside the elements of a namespace, including:

1. Placing the using directives within the namespace removes compiler

embarrassment between contradicting types.

2. When various namespaces are placed within a single file, placing using directives

within the namespace elements fields aliases and references.

Naming Rules

These types of Rules are used to enforce naming requirements for types,

members and variables. Table 3.4 shows examples of naming rules.

Table3.4: Naming rules and examples
Warnings Example of code

method names begin with an upper-case letter:

button1_Click

private void button1_Click(object sender,

EventArgs e)

The variable name 'iCount' begins with a prefix that

looks like Hungarian notation

int iCount

Variable names must start with a lower-case letter (string Section, string Key)

Public and internal fields must start with an upper- public string path

www.manaraa.com

 40

case letter

Field names must not start with an underscore SerialPort _serialPort

-case letter

caused when public or internal field name in C# program does start with a lower

character. If the variable field or name is intended to exchange the name of an item

connected with Win32 or COM, and therefore need to begin with a character of

lowercase, rest the field or variable inside a particular NativeMethods class. A

NativeMethods class is any class which contains a name ending in NativeMethods, and

is intended as a placeholder for Win32 or COM wrappers. StyleCop will ignore this

infringement if the item is set inside a NativeMethods class. For example:

public string path

this public field must start with an upper-case letter , like this :

public string Path

-case letter is resulted

when the name of a field in C# or variable does not begin in a character with a lower-

case. On the other side, non-private read-only and static read-only fields have all the

time to start in a character with an uppercase, at the same time as private read-only

fields have to start in a character with a lowercase. In addition, internal or public fields

have all the time to start in character with an uppercase. For example:

(string Section, string Key)

variable names (Section, Key) must begin with a lowercase character, like this:

(string section, string key)

www.manaraa.com

 41

The warning

field name in C# starts with an under strike. By default, StyleCop disallows the usage of

m_, underscores, etc. For example:

SerialPort _serialPort

field names must not begin with an under strike, like this:

SerialPort serialPort

Hungarian notation

Hungarian notation. The usage of Hungarian notation has been predominant in C++

code; nevertheless the inclination in C# is to use more denominative, longer indication

for variables, which are not based on the type of the variable but describe the reasons of

using variable.

In addition, new source code editors such as Visual Studio make it easier to identify

kind information for a field or variable, by hovering the mouse pointer over the variable

name. This minimizes the requirement for Hungarian notation.

StyleCop presumes that a variable name that starts with one or two lowercase

characters followed by an uppercase character is making utilization of Hungarian

notation. It is probable to declare specific prefixes as legal, in which situation they will

be disregarded. Such as a variable which

to be utilizing Hungarian notation, when in fact it is not. So, the on prefix should be

gestured as an acceptable prefix.

-case letter is resulted when

the name of exact kinds of a C# code component does not begin in character with an

uppercase. These kinds of components are supposed to use character with an uppercase

www.manaraa.com

 42

as the initial character of the component name: enums, structs, delegates, namespaces,

properties, classes, events, and methods.

In addition, any field which is marked with the const attribute, public, or internal should

start with an uppercase character. Read-only Non-private Fields must also be named

utilizing an uppercase character.

Maintainability Rules

These types of Rules are used to improve code maintainability. Table 3.5 shows

examples of maintainability rules.

Table3.5: Maintainability rules and examples
Warnings Example of code

The line contains unnecessary parenthesis double percentFailed = (numErrorFiles /

numFilesProcessed)

The class must have an access modifier static class Program

Fields must be declared with private access. Use

properties to expose fields

public static string estimatingMessage

A C# code file contains more than one unique

class

is caused when a C#

statement have parenthesis in which there is no need for them and are supposed to be

erased. It is probable in C# code to put parenthesis in the region of any kind of

expression, clause, or statement, and in many suitcases use of parenthesis that have the

ability to advance the readability of the C# code; however, the use of parenthesis in an

excessive way make it more difficult to maintain and read the code, and it may have the

contradictory result. For example, the following line of C# code contains unnecessary:

www.manaraa.com

 43

double percentFailed = (numErrorFiles / numFilesProcessed)

The extra parenthesis can be deleted without affecting the readability of the code:

double percentFailed = numErrorFiles / numFilesProcessed

When the

access modifier for the component of a C# code for instance a class has not been

identified in a clear way. In C# language the components are allowed to be identified

with no need for an access modifier (public, private). An access level will be

unexpectedly specified to the component of this situation by C#, depending on the type

of component. An access modifier is demanded for this rule to be identified in a clear

way for each component. This takes out the demands for the reader to make

assumptions about the program of C#, improving the readability of the C# code.

a non-private access

modifier such as public. For example:

public static string estimatingMessage

C# code file contains more than one unique class is resulted

when the file of a C# program involve more than one single class. The class name in a

file is supposed to be replicated by the name of the file, and each class is supposed to be

placed in its own file in order to elevate the maintainability of long-term of the code. If

the other components are supported to the class or referred to the class. It is probable to

place other elements inside the same file the as enums as class, delegates, etc. moreover,

it is probable to place deferent sections - of the same fractional class - inside the same

file.

www.manaraa.com

 44

Layout Rules

These types of Rules are used to enforce code line spacing and layout. Table 3.6

shows layout rules.

Table3.6: Layout rules
Warnings

If a statement spans multiple lines, the closing curly

bracket must be placed on its own line

A statement containing curly brackets must not be

placed on a single line

The body of the if statement must be wrapped in

opening and closing curly brackets

The code must not contain multiple blank lines in a row

A closing curly bracket must not be preceded by a blank

line

Statements or elements wrapped in curly brackets must

be followed by a blank line

Adjacent elements must be separated by a blank line

The code file has blank lines at the end

The body of the if statement must to be wrapped in an opening

and closing curly brackets resulted when the opening and closing curly brackets for a

statement that are blocked has been missed. Some types of statements is might be

facultatively involved curly brackets like if, for, and while statements In C# language.

For example:

 if (true)
 return this.value;

www.manaraa.com

 45

This if-statement was written without curly brackets, although this is valid in C#,

StyleCop always needs the curly brackets to be written, to increase the maintainability

and readability of the C# code.

When the curly brackets are missed, it is probable to be an error in the code by writing

another statement within the if-statement block. For example:

 if (true)
 this.value = 2;
 return this.value;

caused when a blank line precede a closing curly bracket within a C# expression,

element, or statement.

is

resulted when a multiple blank lines are involved in the C# code in one row. Blank lines

are demanded by StyleCop in particular suitcases and they are prevented in other

suitcases in order to enhance the code readability, and as a result for that the readability

and recognition of unfamiliar code can be improved.

is written on a one line. For example:

public object Func()
 {

lock (this) { return value; } }

C# expression, statement, or element is not located on its own line.

www.manaraa.com

 46

Statements or elements wrapped in curly brackets must be

blank line.

Adjacent elements must be separated by a blank

when there is no blank line between two adjacent elements.

there are blank lines are at the end of the code. StyleCop needs no blank lines at the end

of codes, to improve the layout of the code.

Documentation Rules

These types of Rules are used to verify the formatting and the content of C#

code documentation. Table 3.7 shows documentation rules.

Table3.7: Documentation rules
Warnings

A C# code element is missing a documentation header

The partial class element must have a documentation header containing

either a summary tag or a content tag

The enumeration sub-item must have a documentation header

formed

A C# method, constructor, delegate or indexer element is missing

documentation for one or more of its parameters

The documentation describing the parameters to a C# method,

constructor, delegate or indexer element does not match the actual

parameters on the element

www.manaraa.com

 47

match the accessors within the property

A section of the Xml header documentation for a C# element does not

contain any whitespace between words

A C# code file is missing a standard file header

The Xml documentation header for a C# constructor does not contain the

appropriate summary text

A section within the Xml documentation header for a C# element contains

blank lines

 is shaped in a

is resulted when the Xml inside the file header of a C# component cannot be

analyzed and it is formed in a bad way. This may occur if the Xml involves characters

that are invalid or if a closing tag is being lost by an Xml node. Throughout the use of

Xml documentation headers, C# syntax introduces a method for inserting

documentation for classes and components immediately into the C# code.

The

or if a C# partial element is entirely missing a documentation header.

3.3.1.2 JustCode Tool

Naming Rules

There are some warnings will be considered in this section, the first one is

related to naming reasons, is occur when a namespace name matches the name of the

but the name of the namespace is

www.manaraa.com

 48

be converted the namespace

.

Another type of warning- related to naming reasons - is occur when an interface

name does not resemble the file name, to avoid this type of warning should be changed

the file name to be similar to interface name.

first letter should be capital. A violation of this rule occurs when the field name do not

begin with an upper-case letter, to solve it should be capitalized the first letter, and if the

field name should be lowercase

and the first letter of the method name should be uppercase. A violation of this rule

occurs when the field name does not begin with lowercase letter. These kinds of

elements should use an uppercase character as the first character of the element name:

public, namespaces, internal, classes, enums, and const structs.

Readability Rules

There is a warning occurs when there is an extra semicolon within the code, this

results in an empty statement in the code. To fix a transgression of this rule, the

unneeded semicolon should be removed.

Using Rules

There is also a warning occurs when there is a directive within the file which

was never used by any element in the project, such as collection, generic directive.

Another warning occurs when there is a variable, method, parameter has been declared,

and however, they are not used in the program. Also there is a warning occurs when

there is a field used however it is not initialized in the program.

www.manaraa.com

 49

3.3.1.3 Fxcop Tool

Naming Rules

Identifier is not

the personal words that make an identifier are abbreviated or are not spelled correctly.

This rule analyzes the identifier into parts and investigates the spelling of each part. The

parsing algorithm depends on the following rules:

Upper-case characters begin a new token. Such as, MyNameIsJoe divides

into "My", "Name", "Is", "Joe".

For multiple Upper-case characters, the last Upper-case characters begin a

new token. Such as, GUIEditor d

Trailing and Leading apostrophes are deleted. Such as, 'sender' divides into

Underscores mean the end of a token and are deleted. Such as, Hello_world

Embedded ampersands are deleted. Such as, for&mat divides into "format".

 string into terms, dividing

compound words, and investigates the spelling of each term/token. In other words, the

personal words that make a resource string should be spelled rightly, and should not be

abbreviated.

www.manaraa.com

 50

Performance Rules

program exists but is not utilized by any code track. For example, declaring the field

'PluginFamily._policy', but it are never used or are only ever assigned to.

reference type states an explicit static constructor. When a type states a frank static

constructor, the Just-In-Time (JIT) compiler adds a test to each instance constructor and

static method of the type to make certain that the static constructor was already called.

Static initialization is elicited when an instance of the type is made or when any static

member is accessed. But, static initialization is not elicited if a variable is declared of

the type but do not utilize it.

public property in a public type returns an array. An Array returned by protected or

public properties - even if the property is read-only - are not write-protected. To save

the array tamper-proof, a copy of the array must be returned by the property.

within a method but the method does not utilize the variable except perhaps as the

recipient of an assignment statement. For dissection by this rule, the analyzed assembly

must be constructed with debugging information and the associated program database

PDB file must be existed.

www.manaraa.com

 51

3.3.2 A Comparison Between The Tools

After carrying out the analysis on the data which generated when 40 project

codes every project code contain at least 10 files - were applied on these tools

(StyleCop, JustCode, FxCop), and after collect the results in a dataset, then each XSL

file contains at least 500 warnings, after the analysis, it is concluded that the StyleCop

tool has seven types of warnings: layout, documentation, ordering, naming,

readability, spacing, and maintainability. On the other hand, the JustCode tool has three

types of warnings: naming, usage, and readability. And FxCop has many types of

warnings, but 3 types were considered on this study: naming, performance, and usage.

Firstly, we will compare between the results, this comparison related to the types

of warnings, according to the naming warning, if we look at the table 5 and compare the

results to the naming warning in JustCode and FxCop tools - it is concluded that

JustCode and StyleCop tools both con s not match the

rules but all of them considered as one rule in just code tool. As for FxCop, this rule

does not exist.

On the other hand, there are many differences between these tools such as, there

is a ru

this rule does not exist in JustCode and FxCop. As for JustCode, the first three rules are

similar, and they say that the element name within C# code does not match the files and

project name, but as for FxCop the first two rules are different from other tools results.

www.manaraa.com

 52

As for the usage rule, this rule exists only in JustCode and FxCop tools but does

not exist in StyleCop tool, in JustCode tool; there are some rules such as:

1- Field is only assigned.

2- Variable is only assigned.

3- Unused method.

4- Unused parameter.

parameter .

As for the difference between the JustCode and FxCop tools, in JustCode there

are two rules:

1- This cast is not required.

2- Field is never assigned.

In FxCop tool, the rules are:

1- Do not call overridable method in constructors.

2- Do not ignore method results.

As for readability rule, there is a similarity between StyleCop and JustCode, in

ode contains an extra semicolon this rule in StyleCop tool and

here this rule in JustCode tool. Also

there is a rule exists in JustCode tool but not in StyleCop

, however, FxCop tool does not contain readability rules. And there are 5

rules exist in StyleCop but not exist in JustCode.

As for performance rules, this rules exist in FxCop tool but does not exists in

both JustCode and StyleCop tools. Also there are rules exist in StyleCop tool but does

not exists in JustCode and FxCop tools, they are:

1- Spacing.

2- Ordering.

3- Maintainability.

www.manaraa.com

 53

4- Layout.

5- Documentation.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 54

CHAPTER FOUR

RESEARCH GOALS AND APPROACHES

In this chapter, we have described the major goals specified to guide the

experiments. We have also described research approaches or steps taken in trying to test

our proposed research approach.

As we have mentioned in previous chapter earlier, this project focuses on

evaluating source code metric tools, based on their strengths and weaknesses.

Particularly, we focused on two major SCA tools: MS StyleCop and JustCode. Both are

popular and evaluate the different classes of warning we described earlier. Figure 4.1

summarizes the research procedures.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 54

CHAPTER FOUR

RESEARCH GOALS AND APPROACHES

In this chapter, we have described the major goals specified to guide the

experiments. We have also described research approaches or steps taken in trying to test

our proposed research approach.

As we have mentioned in previous chapter earlier, this project focuses on

evaluating source code metric tools, based on their strengths and weaknesses.

Particularly, we focused on two major SCA tools: MS StyleCop and JustCode. Both are

popular and evaluate the different classes of warning we described earlier. Figure 4.1

summarizes the research procedures.

www.manaraa.com

 55

Figure 4.1: Methodology phases

www.manaraa.com

 56

The methodology includes the following six main steps:

1. In initial assessment of these tools, we noticed some differences in the results or the

warnings that come from each tool for the same source code. This was one of the

first problems triggered that we decided to investigate thoroughly.

2. We have developed our own SCA tool. We hope that this tool can overcome some

of the weaknesses of the two evaluated tools: StyleCop and JustCode. We may not

be able to solve all open issues, especially as we noticed that some issues are open

not because the tools cannot solve them but because they are also open in the

software development community. For example, in defining relations and their

limits: parent-child, relations- by extensions or transitive relations, visibility issues.

This was a second major task that will be evaluated in this thesis.

3. We also noticed that the same tool may give different number of warnings for the

same source code if tested or run more than one time. Such inconsistency of results

need to be evaluated and the kind of warnings that may vary from one experiment to

another given the same tool and tested source code. This was a third major task that

will be evaluated in this thesis.

4. Another important aspect that we have focused in our developed tool is the

automatic implementation of suggested warnings and their solutions. Some SCA

tools do not propose solutions. Some tools propose solutions with some problems.

Tools may not have the ability to apply and evaluate applying proposed solutions for

the warnings. We will tackle this issue in our developed tool, by proposing and

applying warning possible solutions.

5. Of course, there is a step of evaluation for our own tool using different class files

and possible codes.

www.manaraa.com

 57

6. We have compared the developed tool with StylCop and Just code.

4.1 Differences in the Results that come from each Tool for the Same Source Code

As mentioned earlier, the major goal in this section is to compare and conduct an

assessment of selected SCA tools. In order to do this, the experimental study is

performed with two open-source code-projects, implemented in C#. Table 4.1 shows an

overview of the evaluated source codes. The first code-project is Chatters that

contains 15 files and the total number of LOC is 2506 lines. On the other hand,

-project contains 23 files, and the total number of LOC is 2702 lines.

Table 4.1: An overview of the projects
Name LOC Files

Chatters 2506 15

Design 2702 23

After applying these SCA tools on the selected open-source code-projects, some

differences were observed in the warnings that were generated from each tool for the

same code-project. This was one of the issues that we determined to investigate

thoroughly. the

total number of warnings was generated is 555. However, according to JustCode tool,

the total number of warnings

According to StyleCop tool, the total number of warnings was generated equal 921.

However, according to JustCode tool, the total number of warnings was generated is

only 95.

As for, the distribution of warnings on the class warnings; this distribution is

different from one project to another, this issue was expected, Table 4.2 and Table 4.3

www.manaraa.com

 58

show this distribution, and it is observed that, in Table 4.3 no readability warning was

generated.

Table 4.2: Distribution the Chatters warnings on classes of warning
StyleCop Class Warnings Chatters Project JustCode Class Warnings

Naming 20 53 Naming

Readability 141 3 Readability

Maintainability 22 47 Usage

Spacing 58

Ordering 124

Layout 77

Documentation 112

Total 555 103

Table 4.3: Distribution the Design warnings on classes of warning
StyleCop Class Warnings Design Project JustCode Class Warnings

Naming 65 69 Naming

Readability 302 Readability

Maintainability 9 26 Usage

Spacing

Ordering 240

Layout 75

Documentation 230

Total 921 95

The results presented in the Table 4.2 and the Table 4.3 show the differences

between numbers of class warnings in each of SCA tools after these tools on different

www.manaraa.com

 59

code projects. In Table 4.2 show that the number of spacing warnings equal to 58, but

the number of spacing warning in the Table 4.3 equal to 0. From this result we return to

the code of Design Project and we found that the line was not any warning because it

did not achieve any of the rules of the spacing warnings.

The results presented in the Table 4.4 and the Table 4.5 show the similarities

and the differences respectively between the results that were generated from applying

the two SCA tools on the two code-projects. Table 4.4 shows the results were generated

from applying the two SCA tools on Chatters project.

Table 4.4: Result from applying SCA tools on Chatters project
Example Code Chatters JustCode Recommendation StyleCop Recommendation

public MessageType
msgType

public MessageType
MsgType

public MessageType
MsgType

private string imageURL private string imageUrl

void
lblExit_MouseDown

void lblExitMouseDown

namespace Chatters namespace ChatService

public enum
CallBackType

Move Type to Another File

private static Object
syncObj

private static readonly
Object syncObj

using
System.Collections;

Remove unused using

Receive(e.person.Name,
e.message);

this.Receive(e.person.Name,
e.message);

this.Receive(e.person.Name,
e.message);

public string message=""; public string message = "";

class Program public class Program

public Person person; private Person person;

www.manaraa.com

 60

Table 4.5 shows the results were generated from applying Design project.

Table 4.5: Result from applying SCA tools on Design project
Example Code Design JustCode Recommendation StyleCop Recommendation

void okButton_Click void OkButtonClick void OkButton_Click

private bool _accepted private bool accepted private bool accepted

interface Searchable interface ISearchable interface ISearchable

void webBrowser1 public void webBrowser1

SetBackgroundColor(

BackColor)

SetBackgroundColor(this.

BackColor)

interface SearchableBro interface SearchDialog

partial class SearchDialog public partial class
SearchDialog

As observed from the results, as for the Warning , the two used SCA

tools have some rules, public field name must start with a capital letter. In

addition, underscore must be removed from field names, as for the function name, the

tools presumes that it must start with a capital letter. But the difference between them,

that JustCode disallows the underscores, on the other hand, StyleCop allows them. For

example as shown in Table 4.5:

void okButton_Click

As for JustCode recommendation (underscore was removed, the first letter was

capitalized):

void OkButtonClick

And as for StyleCop Recommendation (Underscore was not removed, the first letter

was capitalized):

void OkButton_Click.

www.manaraa.com

 61

As for changing the type name, such as interface and namespace, JustCode

requires to change the namespace name or any type name such as class, struct,

interface and enumeration to match file name or folder directory name, or transfer it

to a file that commensurate

in Table 4.4:

namespace Chatters

As for JustCode Recommendation:

namespace ChatService.

As for using warning, this warning does not exist in the StyleCop tool, but in

JustCode, this rules requires deleting unused using system, such as

using System.Collections;

It was not used by any element in the project, so as for JustCode recommendation, it

should be removed.

As for readability rules, private fields according only to JustCode

recommendation must be followed by readonly keyword, as example shows in

Table 4.4:

private static Object syncObj

As for JustCode recommendation (as shown below, it was added after static keyword

directly):

private static readonly Object syncObj

In the existence of the access modifiers to each element and the field must be

private, this rule is found only in StyleCop, and there are some examples in the both

Tables, such as shown in Table 4.4:

class Program

www.manaraa.com

 62

As for StyleCop recommendation:

public class Program

Another example also shown in Table 4.5:

partial class SearchDialog

As for StyleCop recommendation:

private Person person;

4.2 Weaknesses of the Two Evaluated Tools

There are some weaknesses of SCA tools such as: generating false positive

results, continuous inability to find configuration problems; because they are not

represented in the code, difficulty to confirm that an identified security problem is a

practical vulnerability. Many of SCA tools have difficulty analyzing source codes that

cannot be compiled, and many types of security weaknesses are very hard to locate

automatically, such as access control problems, authentication issues, etc.

The two SCA tools (JustCode, StyleCop) are applied on MarsMission project,

and then some warnings (rules) were observed that may be due to some expected errors.

As shown in table 4.6 and table 4.7 respectively, those show some of these warnings

and tools recommendations.

Table 4.6 shows the process of applying JustCode Recommendation, and what

are the results after applying this process.

www.manaraa.com

 63

Table 4.6: Example code MarsMission and JustCode recommendation

As shown, JustCode recommends capitalizing the first letter in

case- is not the same as its first-capital

spelling, IntWidth . They are totally different identifiers. If there is already a field its

 then they will be two variables with the same

name.

As for the recommendations 2 and 3 in Table 4.6, JustCode recommends

renaming the file name that contains a structure to the structure name, but if the field

contains two structures, this causes an error or confusion.

As for the fourth, JustCode recommends initializing any declared field, but the

C# can be declared and not necessary to be

initialized; because there is a default constructor to initialize the data members in the

classes. Thus this recommendation is not correct or accurate.

No. Example Code MarsMission JustCode Recommendation

1 public int intWidth public int IntWidth

2 struct udtWordImageLine Rename the file name to
udtWordImageLine

3 struct udtChemSymbols Rename the file name to
udtChemSymbols

4 Point ptRotateCopy; Field 'ptRotateCopy' is never
assigned

5 using Mars_Mission;

www.manaraa.com

 64

The final recommendation in Table 4.7, JustCode recommends renaming all the

namespaces in the files to the solution or folder name which contains these files.

Table 4.7 shows some code-lines that could not be recognized or recommended

by StyleCop after applying StyleCop on MarsMission project.

Table 4.7: Example code MarsMission and StyleCop recommendation
Example Code MarsMission StyleCop Recommendation

public const string conMasterLimbName No recommendation for the field, but the
StyleCop say the field must have a
private.

public const Int32 ULW_COLORKEY =
0x00000001;

No recommendation for the field, but the
StyleCop say the field must have a
private.

public class classReport StyleCop cannot discover more than one
class

class
classSetNumImagesPerQuarterRotation

No recommendation for the class, but the
StyleCop say the element must have an
access modifier.

As mentioned above, StyleCop recommends converting all non-private fields to

private access modifier, however, the first row in the Table 4.7 shows an example; field

has public access modifier, and there is no recommendation for the field to be private.

As mentioned above, if there is more than one class in the same file, and this

class is not partial, then StyleCop will recommend that there is more than one class in

the same file, but it did not recommend it in this example.

And finally, there must be a recommendation when the access modifier for a C#

code element such as a class has not been explicitly defined. However, the example in

the Table 4.7, there is no recommendation for the class.

www.manaraa.com

 65

 It should be mentioned that are discovered in two ways, the first one is the

process of application of what was recommended by JustCode by using the same tool.

The second way is the process of comparing the result which is obtained from applying

the StyleCop tool on the project with the result which is acquired from applying our

own developed tool in the project.

4.3 Inconsistency Issue

This term refers to the result which is acquired from applying a specific SCA

tool on a project, must not be changed from time to time; in other words, if a specific

source code was applied many times on an SCA tool. Number of warnings should be

always the same.

On the other hand, the number of warnings -which is acquired from applying a

specific SCA tool on a project must be equal the total number of warnings which is

acquired from applying this tool on the files that consist this project. Another

Consistency issue is that, some SCA tools allow to alter the recommendations

automatically. However, these recommendations are incorrect in the tool warnings.

The first and second issues that were mentioned previously do not exist in

StyleCop tool. Figures 4.2 and 4.3 below show the differences between the results

which are obtained from applying a StyleCop tool on the same project many times.

Figures 4.2 shows the results which are obtained the first time, as evident in the Figure,

the number of generated warnings were 1374.

www.manaraa.com

 66

Figure 4.2: Generated warnings from StyleCop tool

After applying this source project on StyleCop many times, the number of

warnings becomes 1002. Figure 4.3 shows a reason that may lead to the difference

between the numbers of the warnings; StyleCop repeated the same warnings many

times, such as the example below:

Figure 4.3: Repeated warnings from StyleCop tool

www.manaraa.com

 67

The second issue of StyleCop is the number of warnings -which are acquired

from applying them on the project is not equal to the total number of warnings

which is acquired from applying it on the files that consist this project.

The third inconsistency issue is related to JustCode, JustCode can alter the

original code, to apply its recommendations, which is done by pressing on

recommendation, after it is pressed, the user can then see the source code, and two

options will be given. Making adjustments and changes will be then allowed. However,

the problem is that options will be given to make alteration on a code line. This

alteration is given in JustCode recommendations incorrect. In other words, make

alteration on a code line is allowed, but this line was listed in the JustCode warnings list

but incorrect. Figure 4.4 shows the inconsistency between the recommendations and

alterations.

Figure 4.4: Inconsistency between the JustCode recommendations and alterations

www.manaraa.com

 68

4.4 Tool Implementation

This section will describe the process following to develop our own SCA tool.

This will be presented in three major activities as typical software developed process:

requirements and implementation.

4.4.1 Requirements

The features were achieved by our SCA tool:

1- Detecting warnings and give the recommendation.

2- Applying the automatic update and changes on the code.

As for the first feature in details, this tool is used to discover the warnings which

are classified or related to four categories; maintainability, naming, ordering, layout.

As for the process of the application of the recommendations on the code; in

other words, if there is any recommendation in some code line, after pressing on

alteration button then the alteration will be applied on the code specifically for the

alteration related to two categories; maintainability, naming.

4.4.2 Implementation

Button maintainability:

Pseudo code:

o WHILE not End Of File (EOF)

IF the file extension is .cs

Read a code line

Split the line to list of strings

Check the line is not contain a comment

Extract the next word from the line

Match the list of string with the rule

www.manaraa.com

 69

Show the updated code in text2

ENDIF

o ENDWHILE

Naming Button:

Pseudo code:

o WHILE not End Of File (EOF)

Read a code line

the line

Split the line to list of strings

Match the list of string with the rule

Match the elements of the generated list with C#

keywords, such as, class, namespace, and others

Check of condition to match rules

Print the warnings based on the checked condition and the

condition in text1

Update the code to Match the detected warnings, and put

the updated code in text2

o ENDWHILE

Ordering Button:

Pseudo code:

o WHILE not End Of File (EOF)

Read a code line

Split the line to list of strings

Match the list of string with the rule

Match the elements of the generated list with C#

keywords, such as , class , namespace , and others

Check of condition to match rules

Print the warnings based on the checked condition and the

condition in text1

www.manaraa.com

 70

o ENDWHILE

Layout Button:

Pseudo code:

o WHILE not End Of File (EOF)

Read a code line

the line

Split the line to list of strings

Match the list of string with the rule

Match the elements of the generated list with C#

keywords, such as class, namespace, and others

Check of condition to match rules

Print the warnings based on the checked condition and the

condition in text1

o ENDWHILE

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 71

CHAPTER FIVE

EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter and based on the developed SCA tool and the previously

described an approach, an experiment will be conducted to evaluate the developed SCA

tool.

For each one of the projects of Software Under Test (SUT), the warnings based

on the SCA tool have been extracted. Those warnings are according to the classes or

categories mentioned, in section 4.4. Forty project codes were utilized for this

experimental study. The sizes of tested projects vary based on the number of classes or

files in each project or software.

5.1 SCA Tool Warnings Extraction

This section is divided into three subsections. In the first subsection the

maintainability warnings will be extracted. In the second subsection the naming

warnings will be extracted. Finally in the third subsection the ordering warnings will be

extracted.

Table 5.1 shows all rules of warnings and examples, which related to the four

kinds mentioned earlier.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 71

CHAPTER FIVE

EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter and based on the developed SCA tool and the previously

described an approach, an experiment will be conducted to evaluate the developed SCA

tool.

For each one of the projects of Software Under Test (SUT), the warnings based

on the SCA tool have been extracted. Those warnings are according to the classes or

categories mentioned, in section 4.4. Forty project codes were utilized for this

experimental study. The sizes of tested projects vary based on the number of classes or

files in each project or software.

5.1 SCA Tool Warnings Extraction

This section is divided into three subsections. In the first subsection the

maintainability warnings will be extracted. In the second subsection the naming

warnings will be extracted. Finally in the third subsection the ordering warnings will be

extracted.

Table 5.1 shows all rules of warnings and examples, which related to the four

kinds mentioned earlier.

www.manaraa.com

 72

Table 5.1: All rules of warnings and description

Category Name of rule Description
M

ai
nt

ai
na

bi
lit

y
R

ul
es

Access Modifier Must Be Declared The class must have an access modifier.

Fields Must Be Private
Fields must be declared with private access.
Use properties to expose fields.

File May Only Contain A Single
Class

A C# document may only contain a single
class at the root level unless all of the classes
are partial and are of the same type.

File May Only Contain A Single
Namespace

A C# code file contains more than one
namespace.

N
am

in
g

R
ul

es

Field Names Must Not Contain
Underscore

Field names must not contain underscore
m_cfgFilename.

Field Names Must Not Begin With
Underscore

Field name must not begin with an
underscore: _cancel.

Accessible Fields Must Begin With
Upper Case Letter

Public, internal, and const field names must
start with an upper-case letter:
intStandardCaveCellDepth.

Interface Names Must Begin With
I

The name of interface does not begin with
the capital letter I SearchableBrowser.

Element Must Begin With Upper
Case Letter

Method names begin with an upper-case
letter: convertButton_Click.

Field Names Must Begin With
Lower Case Letter

The name of a field or variable in C# does
not begin with a lower-case letter.

www.manaraa.com

 73

O
rd

er
in

g
 R

ul
es

 Using Directives Must Be Placed
Within Namespace

Using directives System must be placed
within a namespace.

Constants Must Appear Before
Fields

All constant and readonly private fields must
be placed before all non-constants, non-
readonly private fields.

Protected Must Come Before
Internal

The access modifier internal must come after
the protected keyword in the element
declaration.

L
ay

ou
t R

ul
es Curly Brackets For Multi Line

Statements Must Not Share Line

If a statement spans multiple lines, the
closing curly bracket must be placed on its
own line.

Statement Must Not Be On A
Single Line

A C# statement containing opening and
closing curly brackets is written completely
on a single line.

5.1.1 Warnings Extraction

The maintainability warnings were extracted using our own SCA tool. Several

warning types were extracted. Extracted maintainability warnings are divided into many

kinds. They include the following types as examples:

1- The elements of C# code must have an access modifier.

2- The field must be declared with private access modifier.

3- The file must contain only one class.

4- The file must contain only one namespace.

www.manaraa.com

 74

, the elements were extracted. Those are: class, interface, enum, struct,

constructor, field, method, and property.

Table 5.2 shows some examples of maintainability warnings, which related to

the four kinds mentioned earlier.

Table 5.2: Maintainability warnings extraction examples
LineFile ProjectMaintainability Warning

9Program.cs ClipzThe class must have an access
modifier.

15Program.cs ClipzThe method must have an access
modifier.

29MainWindow.xaml.cs Calculator The property must have an access
modifier.

271GraphForm.xaml.cs Calculator The struct must have an access
modifier.

13classAstronaut.cs Mars Mission The Enumeration must have an access
modifier

29CommPort.cs Termie The field must have an access
modifier

1690classSprite.cs Mars Mission

A C# document may only contain a
single class at the root level unless all
of the classes are partial and are of the
same type.

399classControls.csMars Mission
Fields must be declared with private
access. Use properties to expose
fields.

After applying the SCA warning modification on our own developed tool on the

project that contain 9 files, it is found that the number of maintainability warnings are

total of 315 on all 9 files.

www.manaraa.com

 75

As for the first warning in the T

warning was found in the Clipz project, in Program.cs file at line 9. The

line code is:

static class Program

Notice that, this line code needs an access modifier as will be explained later.

As for the second warning in the T

warning was found in the Clipz project, in Program.cs file at line 15. The

line code is:

static void main()

As for the third warning in the T The property must have an access

modifier. Calculator project, in MainWindow.xaml.cs file

at line 29. The line code is:

string CFgfiename

As for the fourth warning in the T The struct must have an access

modifier. Calculator project, in GraphForm.xaml.cs file at

line 271. The line code is:

struct Sample

As for the fifth warning in the T

nd in the Mars Mission project,

file at line 13. The line code is:

enum enuAstranautProficiencies

www.manaraa.com

 76

As an example for the sixth warning in the T

as found in the Termie project, file at

line 29. The line code is:

SerialPort _serialPort;

As an example for the seventh warning in the T

may only contain a single class at the root level unless all of the classes are partial and

 warning was found in the Mars Mission project, in

 file at line 1690.

As an example for the final warning in the T

 was found in the

Mars Mission p cs file at line 399. The line code is:

public string _strText;

5.1.2 Naming Warnings Extraction

In order to find the naming warnings, we have several rules, which validate

naming warnings, such as:

1- The name of the following components must always begin with an uppercase

letter: namespace, class, method, enum, struct, delegate, property, interface,

private, public, internal, and const.

2- The name of field must not contain an underscore.

3- The name of field must not start with an underscore

The naming warnings were extracted using our own SCA tool. We found a large

group of warnings. Table 5.3 shows examples of those warnings.

www.manaraa.com

 77

Table 5.3: Naming warnings extraction examples
Naming Warning Project File Line

Field names must not contain
underscore m_cfgFilename.

Calculator
MainWindow.xaml.c

s
27

Public, internal, and const field names
must start with an upper-case letter:
intStandardCaveCellDepth.

Mars Mission classCave.cs 12

Field name must not begin with an
underscore: _cancel.

Design Editor.cs 15

Method names begin with an upper-
case letter: convertButton_Click.

Code
Colorizer

Page.xaml.cs 29

Class names must begin with upper
case letter: dbImageBox.

MyControlSa
mples

dbImageBox.cs 68

The name of interface does not begin
with the capital letter I
SearchableBrowser.

Design SearchDialog.cs 51

Enum names must begin with an
upper case letter: enuShipModels.

Mars Mission classShip.cs 17

As shown in the Table 5.3, if the field name has a private access modifier, then it

must begin with a lowercase letter and not contain an underscore, or start with an

underscore, such as:

string m_cfgFilename = string.Empty;

private bool _cancel=false;

elements must always begin with an uppercase

letter. , internal, and const field.

Code Examples:

void convertButton_click()

public class dbImageBox

www.manaraa.com

 78

public enum enushipcondition

public static int intstandardCarecellDepth;

A

I this warning recommends that, the name of interface should begin with a capital

letter I.

5.1.3 Ordering and Layout Warnings Extraction

The ordering and layout warnings were extracted using our own SCA tool. The

tool extracted several types of this warning. It is found that, ordering and layout

warnings are divided to several types such as:

1- All constants and read-only private fields must be placed before all non-

constants, non-read-only private fields.

2- The access modifier keyword must come before the static keyword in the

element declaration.

3- The access modifier; internal must come after the protected keyword in the

element declaration.

4- The using directive must be placed in a namespace

5- The curly bracket must be placed on its own line, if a statement spans

multiple lines.

6- If a statement contains opening and closing bracket in one line, statement is

written completely on a single line.

Table 5.4 below shows some examples of ordering and layout warnings.

www.manaraa.com

 79

Table 5.4: Ordering and Layout warnings extraction examples
Ordering and Layout Warning Project File Line

Using directives System must be
placed within a namespace.

Design TextInsertForm.cs 1

All constant and readonly private
fields must be placed before all non-
constants, non-readonly private fields.

cwTab DoubleBuffer.cs 264

The access modifier internal must
come after the protected keyword in
the element declaration.

FishTank_src FishAnimation.cs 9

If a statement spans multiple lines, the
closing curly bracket must be placed
on its own line.

Mars Mission BitmapRegion.cs 14

A C# statement containing opening
and closing curly brackets is written
completely on a single line.

Mars Mission classAstronaut.cs 295

As for the first warning in the Table 5.4 System must be placed

within a namespace as found in the Design project

file at line 1. The line code is:

Using system;

Using directive was not placed within a namespace, so this warning is appeared.

As for the second warning in the t s and readonly private fields

must be placed before all non-constants, non- warning was

found in the cwTab project, file at line 264. The line code is:

public static readonly int

public const int

As mentioned above, all constants and read-only private fields must be placed before all

non-constants, non-read-only private fields.

www.manaraa.com

 80

Another example:

private int x;

static private int a;

As for the first warning in the t

was found in the

FishTank_src project file at line 9. The line code is:

internal protected int x;

The keyword protected should be preceding the keyword internal.

As for the last two warnings in the table above, they are related to layout

warnings. They are recommending that the opening and closing curly brackets must

each be placed on their own line.

5.2 The Automatic Modification of Proposed Warnings on Tested Code

From previous studies, analysis, and comparisons which we were carried out and

applied on some SCA tools, such as JustCode and StyleCop, we noticed some

differences between these tools, which were previously mentioned.

It is noticed that, there is a key difference between JustCode and StyleCop; the

JustCode allows the programmer to modify or alter the original code to match the

are more comprehensive than JustCode recommendations.

Hence, we thought develop an option in our tool that can compromise between

the StyleCop and JustCode properties. These tool recommendations are comprehensive

as StyleCop tool. It should also allow the programmer to modify or alter the original

code to match the recommendations as JustCode tool. It is worth mentioning that, the

number warnings in our developed tool is less than StyleCop warnings as we did not

www.manaraa.com

 81

include evaluating all types of warnings. However, it allows modifying the original

code as an option similar to JustCode.

In this section, the process of the automatic modification on the code will be

shown, on maintainability and naming warnings.

5.2.1 Maintainability Recommendations Automatic Modification

According to Table 5.1; the process of the automatic modification on the code

will be done according to the recommendations that are related to the specific code line

and it follows to the maintainability rules.

Figure 5.1 shows a sample of the process of code modification.

Figure 5.1: The process of automatic modification on the class element

It can be noticed from the Figure 5.1 above; that after the warning was detected

by the developed tool. The tool recommends that the class must have an access modifier

(public), the tool modified the code at this line, and showed the modified code line in

the other box

public static class Program

www.manaraa.com

 82

Figure 5.2 below shows how the tool detects the warning the method must have

an access modifier and update the code.

Figure 5.2: The process of automatic modification on the method element

As shown in the Figure 5.2, the tool recommends adding an access modifier at

line 15, and then allows modifying the code at this line, so the method then has a

comprehensive declaration:

public static void Main()

The Figure 5.3 shows the process on the co

File; at line 29 which indicates that the property must have an access modifier.

www.manaraa.com

 83

Figure 5.3: The process of automatic modification on the property element

As can be seen in in the Figure 5.3, the tool modified the code at line 29;

Figure 5.4 below shows that the

access modifier the Figure 5.4 shows the modification on the code.

Figure 5.4: The process of automatic modification on the struct element

www.manaraa.com

 84

Figure 5.4 shows that the tool modified the code

added, so the line code becomes:

public struct Sample

As shown in Figure 5.5 at line 13 in ile, there is a

recomme

Though, by looking at the box in Figure 5.5 which includes the shadowed code, the tool

xample:

public enum enuAstronautProficiencies

As shown in the Figure 5.5 below the code was modified by adding access

modifier to enum.

Figure 5.5: The process of automatic modification on the enum element

.

As shown in the Figure 5.6 below, the tool adds a private access modifier, and

then adds auto-implemented properties (private class accessed via get and set

properties).

www.manaraa.com

 85

Figure 5.6: The process of automatic modification on the private field element

As shown in Figure 5.6 above, the tool adds a private access modifier, and then

it declares setter and getter methods.

the field must have a private access modifier in

other words, if the access modifier is not private (i.e. public, protected, or internal), then

it should be converted to private, then the property access modifier should be the same

as after the modification.

5.2.2 Naming Recommendations Automatic Modification

This section will rely on the Table 5.2 in section 5.1 in the process of automatic

code modification that is implemented in the tool.

Figure 5.7 shows how the tool modifies the code which is the result after

implementing recommendations which states that:

names must start with an upper-

www.manaraa.com

 86

Figure 5.7: Modification on the non-private field element in naming warnings

As seen in Figure 5.7

method, and enum names must begin with an upper case letter.

As for the Figure 5.8, it asserts that the name of interface must begin with the

capital letter I .

Figure 5.8: Modification on the interface element in naming warnings

www.manaraa.com

 87

As noticed from the f

public interface ISearchableBrowser

 Applying

ies the code. Thus, underscore -that starts

a field name- will be removed. As shown in the Figure 5.9 below:

Figure 5.9: Modification on the field element that starts with underscore in naming

warnings

5.3 Comparing Between Our Own Tool and Other SCA Tools

This section will focus on the differences and similarities between our own tool

and other SCA tools, specifically JustCode and StyleCop tools.

Table 5.5 shows the comparing between our own tool and other SCA tools such

as JustCode and StyleCop tools.

www.manaraa.com

 88

Table 5.5: Comparing between our own tool and other SCA tools
Category StyleCop JustCode Our Own tool

Maintainability
rules

Access Modifier Must
Be Declared

Access Modifier Must
Be Declared

Fields Must Be Private Fields Must Be Private

File May Only Contain
A Single Class

File May Only Contain
A Single Class

File May Only Contain
A Single Namespace

File May Only Contain
A Single Namespace

Naming Rules

Field Names Must Not
Contain Underscore

Name does not match
the naming
convention

Field Names Must Not
Contain Underscore

Field Names Must
Begin With Lower Case
Letter

Name does not match
the naming
convention

Field Names Must
Begin With Lower
Case Letter

Field Names Must Not
Begin With Underscore

Name does not match
the naming
convention

Field Names Must Not
Begin With
Underscore

Accessible Fields Must
Begin With Upper Case
Letter

Name does not match
the naming
convention

Accessible Fields
Must Begin With
Upper Case Letter

Interface Names Must
Begin With I

Name does not match
the naming
convention

Interface Names Must
Begin With I

Element Must Begin
With Upper Case Letter

Name does not match
the naming
convention

Element Must Begin
With Upper Case
Letter

Ordering Rules

Using Directives Must
Be Placed Within
Namespace

Using Directives Must
Be Placed Within
Namespace

Constants Must Appear
Before Fields

Constants Must
Appear Before Fields

Protected Must Come
Before Internal

Protected Must Come
Before Internal

www.manaraa.com

 89

Layout Rules

Curly Brackets For
Multi Line Statements
Must Not Share Line

Curly Brackets For
Multi Line Statements
Must Not Share Line

Statement Must Not Be
On A Single Line

Statement Must Not
Be On A Single Line

Automatic Code
Change on code

manual
Change on code

automatic
Change on code

automatic

Number of
Warnings Changeable Fixed Fixed

It is noticed that, the number of JustCode recommendations is few. However,

JustCode allows the programmer to modify or alter the original code to match the

recommendations. On the other hand, the number of StyleCop recommendations is

more than JustCode recommendations, while it does not have the option of automatic

updates.

As mentioned in section 3.3, there are StyleCop recommendations -such as

maintainability that do not exist in JustCode. Hence, we though to design an automatic

SCA tool, that modifies the code based on specific rules.

In this section, a comparison will be done between the results that were obtained

from our own tool and StyleCop tool, in terms of accuracy in finding warnings, and

compare them in terms of inconsistency between the results, or in terms of the ability to

modify the code as JustCode tool.

Firstly, we are going to discuss the differences and similarities in the process of

giving the warnings. As for the similarities, as noticed from the Figures 5.10 and 5.11,

our own tool and StyleCop results in the same warning at the same line for the same

tested file or class.

www.manaraa.com

 90

Figure 5.10: StyleCop tool warnings results

Figure 5.11: Our tool warnings results

As noticed in the Figure 5.10, StyleCop tool detected a group of warnings

related to maintainability, they are:

The field must have an access modifier.

The method must have an access modifier.

 28, 40, 233, etc. as shown in Figure

5.11, our own tool detects the same warnings at the same lines for the same tested code.

www.manaraa.com

 91

We will then evaluate the differences between our own tool and Style Cop, for

the process of locating the code line which contains the modification. Figure 5.12 shows

the results that are obtained from applying StyleCop on the MarsMission project. Figure

5.13 shows the results that are obtained from applying our own tool on the MarsMission

project.

Figure 5.12: Apply StyleCop on MarsMission project

Figure 5.13: Apply our own tool on MarsMission project

As noticed from Figure 5.12, there is a class declaration called

classSetNumImagesPerQuarterRotation at line 2839. However, the StyleCop did not

www.manaraa.com

 92

 as shown

in the Figure 5.13, our own tool recommend The class must have an access

 left box, and in the right box. It modified the code by adding a public

access modifier. Such issue may need to be investigated thoroughly to be generalized.

As for the inconsistency issue, it is found that, the number of warnings may

differ from in JustCode when running the tool more than once in the same code. An

example of this is shown in Figure 5.12 the number of warnings is 1389, but as noted in

Figure 5.14 the number of warnings is 1017 when running the tool another time. We

evaluated our tool on several codes through running it several times on each code and

results were always consistent.

Figure 5.14: Applying StyleCop on MarsMission project in second run

As for the process of inaccurate modification on the code by JustCode tool; in

other words, a field has a public access modifier that is converted to read-only by

JustCode, this modification assumed to allow public access to the field without allowing

it to be changed. However, this may be considered as changing the code improperly.

We used (setters and getters) as an alternative (Figure 5.15) which does not

modify the field visibility scope.

www.manaraa.com

 93

Figure 5.15: Public field issue

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 94

CHAPTER SIX

HOW TO USE THE DEVELOPED TOOL

In this chapter, we will explain how our own tool works to detect the warnings

from tested source codes. Each warning class will be mentioned or explained how to

select a file or folder, then how to give a recommendation, and how to modify the code

according the given recommendations.

Figure 6.1 shows the main menu or the graphical user interface of our own tool.

Figure 6.1: Main menu of our SCA tool

The essential components of this screen were discussed or mentioned in section

4.4.

6.1 Maintainability Warnings Extraction

To detect the warnings and give recommendations by pressing on "Open

Directory" button, this button allows the user to choose a folder that consists of a group

of CS files. Figure 6.2 shows how to select a folder using "Browse For Folder" dialog.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 94

CHAPTER SIX

HOW TO USE THE DEVELOPED TOOL

In this chapter, we will explain how our own tool works to detect the warnings

from tested source codes. Each warning class will be mentioned or explained how to

select a file or folder, then how to give a recommendation, and how to modify the code

according the given recommendations.

Figure 6.1 shows the main menu or the graphical user interface of our own tool.

Figure 6.1: Main menu of our SCA tool

The essential components of this screen were discussed or mentioned in section

4.4.

6.1 Maintainability Warnings Extraction

To detect the warnings and give recommendations by pressing on "Open

Directory" button, this button allows the user to choose a folder that consists of a group

of CS files. Figure 6.2 shows how to select a folder using "Browse For Folder" dialog.

www.manaraa.com

 95

Figure 6.2: Browse for folder dialog

To proceed, user should click on "Maintainability Warnings" button then the

results will be shown as in Figure 6.3 below. Figure 6.3 shows the obtained results after

clicking on "Maintainability Warnings".

Figure 6.3: Results after clicking on "Maintainability Warnings"

www.manaraa.com

 96

6.2 Naming Warnings Extraction

In this section, we will explain how to apply the naming rules on the source code

to generate recommendations.

Figure 6.4 shows the process of choosing a file then applying the rules.

Figure 6.4: The process of choosing a file

Then, press on "Naming Warnings" button, in order to apply the rules on the

selected code, as shown in the Figure 6.5 below. Figure 6.5 shows the obtained naming

warnings and the modification on the code.

Figure 6.5: The obtained naming warnings and the modification on the source code

www.manaraa.com

 97

6.3 Ordering and Layout Warnings Extraction

According to these types of warnings, in order to apply them on the source code

select a file using "Open File" button, as mentioned in "Naming Warnings" applying

section , then click on "Ordering Warnings" or "Layout Warnings", then the rules will

be applied , as shown in Figures 6.6 and 6.7 below.

Figure 6.6 shows the process of applying "Ordering Rules" on the source code,

and the results were shown in the first box, but there is no modification on the code.

Figure 6.6: Applying "Ordering Rules" on the source code

Figure 6.7 shows the recommendations that were obtained after applying

"Layout Rules" on the source code.

Figure 6.7: Applying "Layout Rules" on the source code

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 98

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This chapter consists of two sections the first section will explain the conclusion

of the thesis, while the second will show the future work.

7.1 Conclusions

Massive increase in quantity of software integration generates growing demand

for programmers and their productivity, on the other hand, hiring additional

programmers is expensive and ineffective, especially when the system is in execution

time or is indivisible due to the complexity of modern software, and in order to found a

more viable solution is a tool support, this led to growing interest on the tool that based

on source code analysis.

Our SCA tool recommends some of warnings that directed to programmers to

prevent the occurrence of errors.

There are four main SCA tools warnings were studied in this thesis:

maintainability warnings, naming warnings, ordering warnings, and layout warnings.

The main goal of this study is to detect the warnings classes, and the process of

automatic the modification on the source code based on the recommendations.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 98

CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORK

This chapter consists of two sections the first section will explain the conclusion

of the thesis, while the second will show the future work.

7.1 Conclusions

Massive increase in quantity of software integration generates growing demand

for programmers and their productivity, on the other hand, hiring additional

programmers is expensive and ineffective, especially when the system is in execution

time or is indivisible due to the complexity of modern software, and in order to found a

more viable solution is a tool support, this led to growing interest on the tool that based

on source code analysis.

Our SCA tool recommends some of warnings that directed to programmers to

prevent the occurrence of errors.

There are four main SCA tools warnings were studied in this thesis:

maintainability warnings, naming warnings, ordering warnings, and layout warnings.

The main goal of this study is to detect the warnings classes, and the process of

automatic the modification on the source code based on the recommendations.

www.manaraa.com

 99

7.2 The Limitations and Weaknesses

As in most theses and studies, difficulties were encountered. I encountered many

difficulties also the limited time that resulting in inability to detects all the warnings in

our tool, because some warning needs a lot of time.

Moreover, the process of modification on the code needs to apply all the

warnings, and each warning has a group of rules.

One of the difficulties that were encountered during the warnings detecting,

that the warning is given or recommended based on a specific rule, and this rule rely on

the C# element definition or declaration, such as there are many way to write a field

declaration, so that many rules should be written to field declaration, and declaration

nested class.

7.3 Future Work

We plan to extend this work in the future to include the following three areas:

1. Enhancing this work by including all the classes' warnings of source code

to get the best prediction of error.

2. Extent the work of develop tool in the process of the modification on the

code to include all the detected warnings in the develop tool.

3. As for the process of the modification, assurance that did not lead to the

existence of real errors.

4. Adding a new feature to the tool to allow multiple options to the

modifying on the code, as JustCode.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 IX

ABSTRACT

Software testing is one of the most comprehensive phases in the software projects where it takes

a huge amount of time and resources. Testing however is not only the process that occurs after

the implementation executing the program looking for faults to fix them. There are many

supplementary testing activities that may occur within the testing stage or outside that lead to

the same goal as of testing to improve the developed software and reduce effort required to use

it, test it, maintain or update it. One of those supplementary testing activities is source code

analysis. Source code analysis focuses largely on warnings, not errors, where such warnings

indicate possible violation of naming standards or best practices. Such violation may in future

leads to errors and hence should be handed early. Source Code Analysis (SCA) tools such as:

MS StyleCop and JustCode have been developed to help developed areas in their code that

should be improved or modified to eliminate the display if warnings. Some of those tools are

integrated with programming languages environments and compilers. The main objective of this

thesis is to propose and develop an SCA tool that can improve some of the limitations in the

evaluated SCA tools. In order to achieve our main objective, we first conducted an evaluation or

assessment case study looking for limitations and weaknesses in the existing evaluated SCA

tools. Based on such initial assessment and comparison, a list of candidate requirements for the

new SCA tool is assembled. The developed or assembled tool can perform the following tasks:

Detect several categories of warnings, propose solutions to remove those warnings and

automatically apply those warnings if the user or the developer wants to do so. The main

contribution of this thesis is the development of a new SCA tool that can override some of the

limitations of the evaluated SCA tools. The new tool tried to take the good options of both tools

and bypass or avoid their limitations. Results showed that, based on the four warning categories

that we focused on, our tool showed better results in overcoming some of the inconsistency

problems or problems related to the automatic implementation of recommended corrections.

Key Words: source code analysis tools, static code analysis tool, maintainability warnings,
software testing, software quality.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 IX

ABSTRACT

Software testing is one of the most comprehensive phases in the software projects where it takes

a huge amount of time and resources. Testing however is not only the process that occurs after

the implementation executing the program looking for faults to fix them. There are many

supplementary testing activities that may occur within the testing stage or outside that lead to

the same goal as of testing to improve the developed software and reduce effort required to use

it, test it, maintain or update it. One of those supplementary testing activities is source code

analysis. Source code analysis focuses largely on warnings, not errors, where such warnings

indicate possible violation of naming standards or best practices. Such violation may in future

leads to errors and hence should be handed early. Source Code Analysis (SCA) tools such as:

MS StyleCop and JustCode have been developed to help developed areas in their code that

should be improved or modified to eliminate the display if warnings. Some of those tools are

integrated with programming languages environments and compilers. The main objective of this

thesis is to propose and develop an SCA tool that can improve some of the limitations in the

evaluated SCA tools. In order to achieve our main objective, we first conducted an evaluation or

assessment case study looking for limitations and weaknesses in the existing evaluated SCA

tools. Based on such initial assessment and comparison, a list of candidate requirements for the

new SCA tool is assembled. The developed or assembled tool can perform the following tasks:

Detect several categories of warnings, propose solutions to remove those warnings and

automatically apply those warnings if the user or the developer wants to do so. The main

contribution of this thesis is the development of a new SCA tool that can override some of the

limitations of the evaluated SCA tools. The new tool tried to take the good options of both tools

and bypass or avoid their limitations. Results showed that, based on the four warning categories

that we focused on, our tool showed better results in overcoming some of the inconsistency

problems or problems related to the automatic implementation of recommended corrections.

Key Words: source code analysis tools, static code analysis tool, maintainability warnings,
software testing, software quality.

www.manaraa.com

 X

 StyleCop JustCode

SCA

SCA

SCA

SCA

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 II

TABLE OF CONTENTS

Contents Page

AKNOWLEDGEMENT I

TABLE OF CONTENTS II

LIST OF FIGURES V

LIST OF TABLES VII

LIST OF ABBREVIATIONS VIII

ABSTRACT IX

I. INTRODUCTION 1

 1.1 Overview 1

 1.2 Dealing with Quality Problems 1

 1.2.1 Dynamic Testing 2

 1.2.2 Metrics 2

 1.2.3 Source Code Analysis Tools (static testing) 3

 1.3 Sample of Source Code Analysis Tools 3

 1.3.1 StyleCop 3

 1.3.2 JustCode 4

 1.3.3 FxCop 5

 1.4 Problem Statement 5

 1.5 Research Objective 6

 1.6 Research Importance 7

 1.7 Thesis Structure 8

II. RELATED WORK 9

 2.1 Software Metrics and Class Change Proneness 9

 2.2 Testing and Source Code Analysis Tools 14

 2.3 Software Quality 17

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 II

TABLE OF CONTENTS

Contents Page

AKNOWLEDGEMENT I

TABLE OF CONTENTS II

LIST OF FIGURES V

LIST OF TABLES VII

LIST OF ABBREVIATIONS VIII

ABSTRACT IX

I. INTRODUCTION 1

 1.1 Overview 1

 1.2 Dealing with Quality Problems 1

 1.2.1 Dynamic Testing 2

 1.2.2 Metrics 2

 1.2.3 Source Code Analysis Tools (static testing) 3

 1.3 Sample of Source Code Analysis Tools 3

 1.3.1 StyleCop 3

 1.3.2 JustCode 4

 1.3.3 FxCop 5

 1.4 Problem Statement 5

 1.5 Research Objective 6

 1.6 Research Importance 7

 1.7 Thesis Structure 8

II. RELATED WORK 9

 2.1 Software Metrics and Class Change Proneness 9

 2.2 Testing and Source Code Analysis Tools 14

 2.3 Software Quality 17

www.manaraa.com

 III

 2.4 Maintenance 20

III. STATIC CODE ANALYSIS TOOLS 23

 3.1 Static Code Analysis Tools 23

3.1.1 Warnings 24

 3.1.2 Errors 25

 3.1.3 Information 25

 3.2 What can Static Code Analysis Accomplish? 26

 3.3 Analysis and Comparison: Source Code Analysis Tools 27

 3.3.1 Analysis: Source Code Analysis Tools 27

 3.3.1.1 StyleCop Tool 28

 3.3.1.2 JustCode Tool 47

 3.3.1.3 FxCop Tool 49

 3.3.2 A Comparison between the Tools 51

IV. RESEARCH GOALS AND APPROACHES 54

 4.1 Differences in the Results that come from each Tool for the
Same Source Code

57

 4.2 Weaknesses of the Two Evaluated Tools 62

 4.3 Inconsistency Issue 65

 4.4 Tool Implementation 68

 4.4.1 Requirements 68

 4.4.2 Implementation 68

V. EXPERIMENTAL RESULTS AND ANALYSIS 71

 5.1 Source Code Analysis Tool Warnings Extraction 71

 5.1.1 Maintainability Warnings Extraction 73

 5.1.2 Naming Warnings Extraction 76

 5.1.3 Ordering and Layout Warnings Extraction 78

 5.2 The Automatic Modification of Proposed Warnings on Tested 80

www.manaraa.com

 IV

Code

 5.2.1 Maintainability Recommendations Automatic
Modification

81

 5.2.2 Naming Recommendations Automatic Modification 85

 5.3 Comparing Between Our Own Tool and Other SCA Tools 87

VI. HOW TO USE THE DEVELOPED TOOL 94

 6.1 Maintainability Warnings Extraction 94

 6.2 Naming Warnings Extraction 96

 6.3 Ordering and Layout Warnings Extraction 97

VII. CONCLUSIONS AND FUTURE WORK 98

 7.1 Conclusions 98

 7.2 The Limitations and Weaknesses 99

 7.3 Future Work 99

VIII. REFERENCES 100

www.manaraa.com

 V

LIST OF FIGURES

Figures Title Page

Figure 4.1: Methodology phases 55

Figure 4.2: Generated warnings from StyleCop tool 66

Figure 4.3: Repeated warnings from StyleCop tool 66

Figure 4.4: Inconsistency between the JustCode
recommendations and alterations

67

Figure 5.1: The process of automatic modification on the
class element

81

Figure 5.2: The process of automatic modification on the
method element

82

Figure 5.3: The process of automatic modification on the
property element

83

Figure 5.4: The process of automatic modification on the
struct element

83

Figure 5.5: The process of automatic modification on the
enum element

84

Figure 5.6: The process of automatic modification on the
private field element

85

Figure 5.7: Modification on the non-private field element in
naming warnings

86

Figure 5.8: Modification on the interface element in naming
warnings

86

Figure 5.9: Modification on the field element that starts with
underscore in naming warnings

87

Figure 5.10: StyleCop tool warnings results 90

Figure 5.11: Our tool warnings results 90

Figure 5.12: Apply StyleCop on MarsMission project 91

Figure 5.13: Apply our own tool on MarsMission project 91

Figure 5.14: Applying StyleCop on MarsMission project in
second run

92

Figure 5.15: Public field issue 93

www.manaraa.com

 VI

Figure 6.1: Main menu of our SCA tool 94

Figure 6.2: Browse for folder dialog 95

Figure 6.3: Results after clicking on "Maintainability
Warnings"

95

Figure 6.4: The process of choosing a file 96

Figure 6.5: The obtained naming warnings and the
modification on the source code

96

Figure 6.6: Applying "Ordering Rules" on the source code 97

Figure 6.7: Applying "Layout Rules" on the source code 97

www.manaraa.com

 VII

LIST OF TABLES
Tables Title Page

Table 1.1: A sample SCA warning classification 4

Table 3.1: Spacing rules and examples 29

Table 3.2: Readability rules and examples 35

Table 3.3: Ordering rules 38

Table 3.4: Naming rules and examples 39

Table 3.5: Maintainability rules and examples 42

Table 3.6: Layout rules 44

Table 3.7: Documentation rules 46

Table 4.1: An overview of the projects 57

Table 4.2: Distribution the Chatters warnings on classes of warning 58

Table 4.3: Distribution the Design warnings on classes of warning 58

Table 4.4: Result from applying SCA tools on Chatters project 59

Table 4.5: Result from applying SCA tools on Design project 60

Table 4.6: Example code MarsMission and JustCode recommendation 63

Table 4.7: Example code MarsMission and StyleCop recommendation 64

Table 5.1: All rules of warnings and description 72

Table 5.2: Maintainability warnings extraction examples 74

Table 5.3: Naming warnings extraction examples 77

Table 5.4: Ordering and Layout warnings extraction examples 79

Table 5.5: Comparing between our own tool and other SCA tools 88

www.manaraa.com

 VIII

LIST OF ABBREVIATIONS

API Application Programming Interface
DRE Defect Removal Efficiency
EENOM Earliest Evolution Of Number Of Methods
GUI Graphical User Interface
IUC Interface Usage Cohesion
JIT Just In Time
LENOM Latest Evolution of Number Of Methods
LOC Lines Of Code
NASA National Aeronautics and Space Administration
NHCTMC Non-homogeneous Continuous Time Markov Chain
OO Object Oriented
OOAD Object-oriented analysis and design
SUT Software Under Test
SCA Source Code Analysis
SCC -grained Source Code Changes
SDLC Systems Development Life Cycle

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects

Prediction

by:

Qosai Mwafeq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects

Prediction

by:

Qosai Mwafeq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

www.manaraa.com

www.manaraa.com

 I

ACKNOWLEDGMENT

I would like to thank Allah for giving me the patience to work hard and overcome my

research obstacles.

Foremost, I would like to express my sincere gratitude to my advisors Professor Dr.

Bilal A. H. Abul-Huda and Dr. Izzat Alsmadi for the continuous support of my Master

study and research, for their patience, motivation, enthusiasm, and immense knowledge.

The guidance helped me in all the time of research and writing of this thesis. I could not

have imagined having a better advisors and mentors for my Master study.

Besides my advisors, I would like to thank the rest of my thesis committee: Dr. Ahmad

Saifan, and Professor Dr. Fawaz AL Zaghoul, for their encouragement, insightful

comments, and hard questions.

My thanks to my friends for their honest friendship, care, and for being kind to provide

help and support.

I am deeply and forever indebted to my parents and my wife for their love, support and

encouragement throughout my entire life.

Qosai AL_zoubi

 MAY 05, 2013

www.manaraa.com

 II

TABLE OF CONTENTS

Contents Page

AKNOWLEDGEMENT I

TABLE OF CONTENTS II

LIST OF FIGURES V

LIST OF TABLES VII

LIST OF ABBREVIATIONS VIII

ABSTRACT IX

I. INTRODUCTION 1

 1.1 Overview 1

 1.2 Dealing with Quality Problems 1

 1.2.1 Dynamic Testing 2

 1.2.2 Metrics 2

 1.2.3 Source Code Analysis Tools (static testing) 3

 1.3 Sample of Source Code Analysis Tools 3

 1.3.1 StyleCop 3

 1.3.2 JustCode 4

 1.3.3 FxCop 5

 1.4 Problem Statement 5

 1.5 Research Objective 6

 1.6 Research Importance 7

 1.7 Thesis Structure 8

II. RELATED WORK 9

 2.1 Software Metrics and Class Change Proneness 9

 2.2 Testing and Source Code Analysis Tools 14

 2.3 Software Quality 17

www.manaraa.com

 III

 2.4 Maintenance 20

III. STATIC CODE ANALYSIS TOOLS 23

 3.1 Static Code Analysis Tools 23

3.1.1 Warnings 24

 3.1.2 Errors 25

 3.1.3 Information 25

 3.2 What can Static Code Analysis Accomplish? 26

 3.3 Analysis and Comparison: Source Code Analysis Tools 27

 3.3.1 Analysis: Source Code Analysis Tools 27

 3.3.1.1 StyleCop Tool 28

 3.3.1.2 JustCode Tool 47

 3.3.1.3 FxCop Tool 49

 3.3.2 A Comparison between the Tools 51

IV. RESEARCH GOALS AND APPROACHES 54

 4.1 Differences in the Results that come from each Tool for the
Same Source Code

57

 4.2 Weaknesses of the Two Evaluated Tools 62

 4.3 Inconsistency Issue 65

 4.4 Tool Implementation 68

 4.4.1 Requirements 68

 4.4.2 Implementation 68

V. EXPERIMENTAL RESULTS AND ANALYSIS 71

 5.1 Source Code Analysis Tool Warnings Extraction 71

 5.1.1 Maintainability Warnings Extraction 73

 5.1.2 Naming Warnings Extraction 76

 5.1.3 Ordering and Layout Warnings Extraction 78

 5.2 The Automatic Modification of Proposed Warnings on Tested 80

www.manaraa.com

 IV

Code

 5.2.1 Maintainability Recommendations Automatic
Modification

81

 5.2.2 Naming Recommendations Automatic Modification 85

 5.3 Comparing Between Our Own Tool and Other SCA Tools 87

VI. HOW TO USE THE DEVELOPED TOOL 94

 6.1 Maintainability Warnings Extraction 94

 6.2 Naming Warnings Extraction 96

 6.3 Ordering and Layout Warnings Extraction 97

VII. CONCLUSIONS AND FUTURE WORK 98

 7.1 Conclusions 98

 7.2 The Limitations and Weaknesses 99

 7.3 Future Work 99

VIII. REFERENCES 100

www.manaraa.com

 V

LIST OF FIGURES

Figures Title Page

Figure 4.1: Methodology phases 55

Figure 4.2: Generated warnings from StyleCop tool 66

Figure 4.3: Repeated warnings from StyleCop tool 66

Figure 4.4: Inconsistency between the JustCode
recommendations and alterations

67

Figure 5.1: The process of automatic modification on the
class element

81

Figure 5.2: The process of automatic modification on the
method element

82

Figure 5.3: The process of automatic modification on the
property element

83

Figure 5.4: The process of automatic modification on the
struct element

83

Figure 5.5: The process of automatic modification on the
enum element

84

Figure 5.6: The process of automatic modification on the
private field element

85

Figure 5.7: Modification on the non-private field element in
naming warnings

86

Figure 5.8: Modification on the interface element in naming
warnings

86

Figure 5.9: Modification on the field element that starts with
underscore in naming warnings

87

Figure 5.10: StyleCop tool warnings results 90

Figure 5.11: Our tool warnings results 90

Figure 5.12: Apply StyleCop on MarsMission project 91

Figure 5.13: Apply our own tool on MarsMission project 91

Figure 5.14: Applying StyleCop on MarsMission project in
second run

92

Figure 5.15: Public field issue 93

www.manaraa.com

 VI

Figure 6.1: Main menu of our SCA tool 94

Figure 6.2: Browse for folder dialog 95

Figure 6.3: Results after clicking on "Maintainability
Warnings"

95

Figure 6.4: The process of choosing a file 96

Figure 6.5: The obtained naming warnings and the
modification on the source code

96

Figure 6.6: Applying "Ordering Rules" on the source code 97

Figure 6.7: Applying "Layout Rules" on the source code 97

www.manaraa.com

 VII

LIST OF TABLES
Tables Title Page

Table 1.1: A sample SCA warning classification 4

Table 3.1: Spacing rules and examples 29

Table 3.2: Readability rules and examples 35

Table 3.3: Ordering rules 38

Table 3.4: Naming rules and examples 39

Table 3.5: Maintainability rules and examples 42

Table 3.6: Layout rules 44

Table 3.7: Documentation rules 46

Table 4.1: An overview of the projects 57

Table 4.2: Distribution the Chatters warnings on classes of warning 58

Table 4.3: Distribution the Design warnings on classes of warning 58

Table 4.4: Result from applying SCA tools on Chatters project 59

Table 4.5: Result from applying SCA tools on Design project 60

Table 4.6: Example code MarsMission and JustCode recommendation 63

Table 4.7: Example code MarsMission and StyleCop recommendation 64

Table 5.1: All rules of warnings and description 72

Table 5.2: Maintainability warnings extraction examples 74

Table 5.3: Naming warnings extraction examples 77

Table 5.4: Ordering and Layout warnings extraction examples 79

Table 5.5: Comparing between our own tool and other SCA tools 88

www.manaraa.com

 VIII

LIST OF ABBREVIATIONS

API Application Programming Interface
DRE Defect Removal Efficiency
EENOM Earliest Evolution Of Number Of Methods
GUI Graphical User Interface
IUC Interface Usage Cohesion
JIT Just In Time
LENOM Latest Evolution of Number Of Methods
LOC Lines Of Code
NASA National Aeronautics and Space Administration
NHCTMC Non-homogeneous Continuous Time Markov Chain
OO Object Oriented
OOAD Object-oriented analysis and design
SUT Software Under Test
SCA Source Code Analysis
SCC -grained Source Code Changes
SDLC Systems Development Life Cycle

www.manaraa.com

 IX

ABSTRACT

Software testing is one of the most comprehensive phases in the software projects where it takes

a huge amount of time and resources. Testing however is not only the process that occurs after

the implementation executing the program looking for faults to fix them. There are many

supplementary testing activities that may occur within the testing stage or outside that lead to

the same goal as of testing to improve the developed software and reduce effort required to use

it, test it, maintain or update it. One of those supplementary testing activities is source code

analysis. Source code analysis focuses largely on warnings, not errors, where such warnings

indicate possible violation of naming standards or best practices. Such violation may in future

leads to errors and hence should be handed early. Source Code Analysis (SCA) tools such as:

MS StyleCop and JustCode have been developed to help developed areas in their code that

should be improved or modified to eliminate the display if warnings. Some of those tools are

integrated with programming languages environments and compilers. The main objective of this

thesis is to propose and develop an SCA tool that can improve some of the limitations in the

evaluated SCA tools. In order to achieve our main objective, we first conducted an evaluation or

assessment case study looking for limitations and weaknesses in the existing evaluated SCA

tools. Based on such initial assessment and comparison, a list of candidate requirements for the

new SCA tool is assembled. The developed or assembled tool can perform the following tasks:

Detect several categories of warnings, propose solutions to remove those warnings and

automatically apply those warnings if the user or the developer wants to do so. The main

contribution of this thesis is the development of a new SCA tool that can override some of the

limitations of the evaluated SCA tools. The new tool tried to take the good options of both tools

and bypass or avoid their limitations. Results showed that, based on the four warning categories

that we focused on, our tool showed better results in overcoming some of the inconsistency

problems or problems related to the automatic implementation of recommended corrections.

Key Words: source code analysis tools, static code analysis tool, maintainability warnings,
software testing, software quality.

www.manaraa.com

 X

 StyleCop JustCode

SCA

SCA

SCA

SCA

www.manaraa.com

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Through the software development life cycle a series of changes need to be

accomplished. These changes are required because of many reasons such as;

enhancement, adaption, and maintenance or fixing the program defects (Bieman, et al,

2003). From these changes and results we can say the software is infinitely flexible

(Koru.2005). However, changes must be considered as major risk elements, since they

may impact time and cost (Koru & Liu, 2007). In addition, change-proneness of the

software may lead to specific important quality issues (Bieman, et al, 2003).

The change history of software code provides useful information about the

evolution of programs. This information helps us to understand the overall picture of the

system evolution starting from design phase ending with maintainability phase (Al-

khiaty.2009).

Software quality is a serious issue to consider, since software is entering in all

life details starting from simple industries like children toys ending to industries like

airplane.

1.2 Dealing with Quality Problems

To deal with the quality problems we need to study how can we test and

measure the source code itself. The results from these studies and measurements

provide useful information that can help in solving such quality problems.

www.manaraa.com

 2

1.2.1 Dynamic Testing

Dynamic testing or analysis focuses in accomplishing customer requests by

supporting all requirements and functionalities by the software as a final product

(Lochmann & Goeb, 2011).

Software testing tools are programs that try to find errors, defects, bugs, failures,

etc. in the evaluated software products. Those different terms are, sometime, different

based on the level and the nature of the errors. The errors are unexpected behavior of

the system. The defects refer to the many problems related to software products, either

external behavior or internal features, but a fault in a program which causes the program

to perform in an unintended or unanticipated manner. The failure that means the system

does not deliver a service as expected by it is user. The output of each test case in a

testing process is one of two: pass or fail. The designer of the test cases defines the

inputs for each test case along with expected outputs. On the execution, test cases are

executed and actual results are compared with expected results. For those failed test

cases (i.e. expected result is different from the actual result), a debugging process

further starts to see why those test cases produce incorrect outputs or results. Errors can

be syntax, semantic, functional, and non-functional. Errors may stop the compilation

process or may not and only cause different or unexpected behavior from those defined

by users.

1.2.2 Metrics

Studying class characteristics and identifying their attributes in terms of changes

is very useful in the maintenance process. Consequently, this will make project manager

and team to give more attention to the possibility of changes in classes during the

www.manaraa.com

 3

project life cycle (Bieman, et al, 2003). Here where the importance of measuring

software metrics takes place.

1.2.3 Source Code Analysis Tools (static testing)

Many quality aspects can be identified by using metrics. Thus, software metrics

are tools to measure one or more code attributes (EKLÖF.2011).

Source code analysis (SCA) tools are used to check the source code for attributes

such: number of lines of code or any other static metrics of the code. Examples of such

static metrics include: Lines Of Code (LOC), size, and complexity. It can be applied

after the code is written which means that it may help us to learn about the code and

possibly catch defects before testing phase. Although SCA cannot find all kinds of

defects, it can be considered as an efficient tool in terms of cost and time

(EKLÖF.2011). SCA tools are usually applied automatically with the least amount of

effort and time from the users or testers side.

1.3 Sample of Source Code Analysis Tools

In this section, we will list some tool examples that are applied on the source

code specially those that we used in our experimental studies.

1.3.1 StyleCop

StyleCop is an open source static SCA tool from Microsoft that checks .NET

code for conformance of several design guidelines defined based on Microsoft's .NET

Framework (CodePlex.2011). StyleCop analyzes the code in order to apply a set of rules

which can be classified into several categories such as (CodePlex.2011): Naming,

maintainability, documentation, ordering, readability, spacing, and layout. Table 1.1

shows a sample of some warnings and their classification.

www.manaraa.com

 4

Table 1.1: A sample SCA warning classification
Warnings Categories

The spacing around an operator symbol is incorrect. Spacing

The call to channel should only use the 'base.' prefix if the

item is declared virtual in the base class and an override is

defined in the local class. Otherwise, prefix the call with this

rather than base.

Readability

All using directives must be placed inside of the namespace Ordering

Method names begin with an upper-case letter. Naming Rules

The class must have an access modifier Maintainability

A statement containing curly brackets must not be placed on

a single line. The opening and closing curly brackets must

each be placed on their own line.

Layout

The constructor must have a documentation header. Documentation

1.3.2 JustCode

JustCode is another example of SCA tools. There are some JustCode features

that include (Telerik.2011): On-the-fly Code analysis, code navigation and search,

refactoring, quick fixes, coding assistant and hints. JustCode executes its code analysis

by applying custom inspections. There are several inspects that can be performed by

JustCode. Examples include (Telerik.2011): Identical if and else clauses, obsolete casts,

empty statements, assignments with no effect, unused private members, unused

parameters, variables, namespaces, or statements. Figure 1.1 shows a sample of SCA

output from JustCode.

public int Foo()
{

return "bar";
 // C#: An instance of type "string" cannot be returned by a method of type "int"
}

 Errors by default Just Code underlines errors with a red line

www.manaraa.com

 5

1.3.3 FxCop

FxCop is another example of SCA tools. FxCop is an application that resolves

assembly codes after the source codes are compiled, and notifies information about the

code assemblies, such as security improvements, possible design, performance and

localization (MSDN, 2013).

FxCop is intentional for class library developers. But, anyone making

applications that should conform to the .NET Framework best exercises will benefit.

Also, FxCop is useful as a pedagogical tool for people who are uncommon with the

.NET Framework Design Guidelines or who are fresh to the .NET Framework (MSDN,

2013).

FxCop is developed to be fully merged into the Systems Development Life

Cycle (SDLC) and is distributed as both a command-line tool (FxCopCmd.exe)

appropriate for integrated with Microsoft Visual Studio or usage as part of automated

build processes .NET as an exterior tool. And a fully distinguished application that has

a Graphical User Interface (GUI) (FxCop.exe) for interactive work (MSDN, 2013).

1.4 Problem Statement

Static source code analysis tools are software programs that are used to evaluate

programs statistically and evaluate certain characteristics based on predefined quality

standards. Unlike software testing where expected output will be (pass or fail) based on

the conformance of expected outcome with the actual outcome. In SCA, the output will

be one of three classes: error, warning or information.

Criteria are defined for what standard or typical program should be or should

have. Based on those standards, a subject code is evaluated depending on the level of

www.manaraa.com

 6

conformance or violation of a standard, one of the three classes (i.e. error, warning, or

information) is defined to show some quality aspects of the evaluated software.

 First, we have evaluated several selected free and commercial SCA tools for the

purpose of comparing, correlating and assessing the results. Our focus is on the warning

class of issues as it is considered as a vague class between errors and information where

many developers underestimate or ignore warning signs.

Second, we have evaluated the relations and the correlation between SCA

reported warnings. Extensive statistical analyses from all evaluated SCA tools are

conducted to evaluate the ability of warning reports by SCA tools to predict bugs or

defects.

Based on those relations from the different SCA tools, we have first listed the

important characteristics from all warning classes that were significant to bugs or

defects.

Moreover, we have proposed enhancements on SCA and developed a tool to

consider the major warning classes that showed high defect predictability values. The

last goal that we have performed is to evaluate the correlations between data from

software metrics tools and SCA tools.

1.5 Research Objectives

Based on the problem statement, we defined three major objectives that are

accomplished in this thesis:

Extensively evaluate several selected free and commercial SCA tools for

the purpose of comparing, correlating and assessing the reported

information. Expected outcome has included statistical data from several

www.manaraa.com

 7

open source evaluated projects that show all classes of warnings

collected from the selected SCA tools. Moreover, the similarities and

differences between the SCA tools will be shown.

Evaluate the inconsistency of results and the kind of warnings that may

vary from one experiment to another given the same tool and tested

source code. Expected output have data and reports with inconsistency

between reported warnings in the tools when apply these tools more than

one run or test.

Proposed enhancements on SCA and developed a tool to consider the

major warning classes that showed high defect predictability values.

Expected output is a tool or, for the least, a framework for the relevant

and important SCA warning information combined from all evaluated

SCA tools and possibly adding new warning classes discovered through

this thesis and evaluate the correlations between data from software

metrics tools and SCA tools.

1.6 Research Importance

Software quality tools are used to assess quality of software through all

development stages. However, there is a little public information about test evaluation

of the accuracy and value of the warning that are reported from some of these tools

(Ayewah, et al, 2007).

By using static SCA tools we can study the architecture of the source code

packages (EKLÖF.2011). Therefore, we have tested several codes downloaded from

SourceForge.NET to evaluate the value of different warning messages in that code

www.manaraa.com

 8

project and see if such warning messages can correlate with bug or defect data collected

from the source codes.

1.7 Thesis Structure

The following chapters of this thesis are organized as the following: Chapter two

presents related studies to software quality. Chapter three presents static code analysis

tools. Chapter four shows the research goals and approaches. Chapter five presents

experimental results and analysis. Chapter six describes how to use the proposed tool.

Chapter seven presents the conclusions and future work.

www.manaraa.com

 9

CHAPTER TWO

RELATED WORKS

This chapter is a literature survey of the previous work that search in the history

of software metrics, software analyzing, and software maintainability in order to

enhance the quality and maintainability even after the product released.

It is divided into four sections starting with first section that describe software

metrics their importance as attributes of software, and their role in facilitating software

maintainability. Second section describes software quality. The Third section considers

testing and SCA tools. Finally fourth section is dealing with software maintainability

and changes as the final step in the software development life cycle.

2.1 Software Metrics and Class Change Proneness

Studying software metrics class characteristics and identifying their attributes in

term of changes is very useful in the maintenance process. Consequently, this will make

encourage project manager and his team to give more attention to the possibility of

changes in classes during the project life cycle (Bieman, et al, 2003). Here where the

importance of measuring software metrics take place.

According to Girba et al. (2004), their approach depends on the changes in the

evolution of the Object Oriented (OO) software system by providing historical

measurement study. The study focuses on the change in the history of a class by

observing the change in the nature of methods in different versions, that means they

measure the change by using one main code attribute (number of methods) add or

remove method to certain class. Form the number of methods metrics can be derived

www.manaraa.com

 10

another two different metrics, the Latest Evolution Of Number Of Methods (LENOM)

and the Earliest Evolution Of Number Of Methods (EENOM). By these two metrics the

change in size inside each class over the software history different versions can be

known and changes here focus only on the number of methods that added or removed

from each class over different releases.

Koru and Liu (2007) focus on change-prone classes by providing tree-based

model that shows the class characteristics,

code programs which state that 80% of code changes are centered at 20% of the classes.

They mainly searched in how to identify change-prone classes and their characteristics

by trying to observe the change of set of static metrics of a group of products with

different releases of an open source project, they prove the validity and applicability of

development and maintenance of large-scale open source programs.

According to Basten and Klint (2009), finding and discovering the facts from a

source code is an important step while software analysis is done. Several experiments

are done and found that extracting facts from any source code then writing them in a

large wide of programming languages; it will lead to hard working and error prone.

Because of these reasons they developed a new technique which called DeFacto. It is

language-parametric analysis software for fact extraction from the software source code.

According to Bieman, et al. (2003), four research questions were treated. The

first research question was about visualization and identification of change-prone sets of

classes in an object-oriented framework. The second research question was to do with

differentiating change-prone clusters from local change-proneness of classes. Also this

method was displaying how to determine the degree to which classes are change-prone

www.manaraa.com

 11

both in their interplays with others and locally. This method was applied to a

considerable case study. For this case study, in response to the third research question

that which modifies interplays between classes do not necessarily imitate functional

interplays in the resolve of the framework. This which can have a diversity of causes.

An example would be refinements of specific factors such as performance. Performance

refinements may trigger concurrent alterations in classes that otherwise do not react

with each other. On the other hand, in response to fourth research question, cluster

change-proneness versus local was visualized through the alter-architecture graph and

paralleled it to the design graph. We also differentiated between alter-prone clusters of

classes which did not include in patterns and those which are included. The

visualization was straightforward and simple and driven by the alteration measures that

were identified. Future work in this field involves the representation of other

measurements such as size of box symbolizing size of class, utilizing of color, and

covers of alter-architecture versus rational architecture.

According to Romano and Pinzger (2011), interfaces declare contracts that are

denoted to stay stable during the development of a software framework while the

concrete classes implementation (a subclass class can be instantiated that implements all

the missing functionality) is more likely to alter. This guide to another evolutionary

demeanor of interfaces paralleled to concrete classes. This behavior was experimentally

examined with the C&K metrics that are broadly utilized to estimate the implementation

quality of interfaces and classes. The outcomes of the study with two Hibernate projects

and eight Eclipse plug-in and indicate that, the Interface Usage Cohesion (IUC) metric

e-grained Source Code

Changes (SCC) than the C&K metrics when stratified to interfaces, also The IUC metric

www.manaraa.com

 12

can ameliorate the performance of foretelling models in categorizing Java interfaces

into two categories, change-prone and not change-prone.

According to Romano et al. (2012), Anti-patterns have

that classes impacted by anti-patterns are more change-prone than classes that did not

impact by anti-patterns. A deeper premeditation was provided into which anti-patterns

direct to which kinds of alterations in Java classes. The change-proneness of these

classes was analyzed taking in consideration 40 kinds of (SCC) derived from the

version control depository of 16 Java open-source frameworks. Classes impacted by

anti-patterns alter more repeatedly along the development of a framework; Classes

impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-patterns are

more probable to be altered than classes impacted by other anti-patterns in addition that,

specific anti-patterns lead to specific kinds of source code alterations, like as

Application Programming Interface (API) alterations are more probable to be shown in

classes impacted by the SwissArmyKnife, ComplexClass, and SpaghettiCode anti-

patterns.

Shatnawi and Li (2008) investigated three publications of the Eclipse project and

detected that although several software metrics can still prognosticate class fault

proneness in three errors - acuteness categories, the thoroughness of the prognosis

minimized from publications to publications. Moreover, the Researchers detected that

the prognosis cannot be utilized to construct a software metrics paradigm to recognize

fault- s a

software develops, the utilize of certain usually utilized metrics to recognize which

classes are more prone to faults turns into increasingly complicated.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

 100

REFERENCES

Abraham, J. and Friedman, J. 2012. Building Confidence in the Quality and Reliability

of Critical Software. CrossTalk.

Al-Khiaty, Mojeeb 2009. Software evolution metrics for object-oriented software

changeability prediction. Department Computer Science King Fahd University

of Petroleum and Minerals, Saudi Arabia.

Ayewah, N., Pugh, W., Morgenthaler, J., Penix, J. and Zhou, Y. 2007. Evaluating Static

Analysis Defect Warnings on Production Software. In Proceedings of the 7th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering (PASTE '07), San Diego, California, USA. Pp 1-8.

Basten, H. J. S and Klint, P. 2009. DeFacto: Language-Parametric Fact Extraction

 from Source Code. Springer-Verlag Berlin Heidelberg. Pp 265-284.

Bernstein, A., Ekanayake, J. and Pinzger, M. 2007. Improving Defect Prediction Using

 Temporal Features and Non Linear Models. In Proceedings of Ninth

international workshop on Principles of software evolution: in conjunction with

the 6th ESEC/FSE joint meeting (IWPSE '07). Dubrovnik, Croatia. Pp 11-18.

Bieman, J., Andrews, A. and Yang, H. 2003. Understanding Change-proneness in OO

Software through Visualization. In Proceedings of the 11th IEEE International

Workshop on Program (IWPC). Portland, OR, USA. Pp 44-53.

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

 100

REFERENCES

Abraham, J. and Friedman, J. 2012. Building Confidence in the Quality and Reliability

of Critical Software. CrossTalk.

Al-Khiaty, Mojeeb 2009. Software evolution metrics for object-oriented software

changeability prediction. Department Computer Science King Fahd University

of Petroleum and Minerals, Saudi Arabia.

Ayewah, N., Pugh, W., Morgenthaler, J., Penix, J. and Zhou, Y. 2007. Evaluating Static

Analysis Defect Warnings on Production Software. In Proceedings of the 7th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering (PASTE '07), San Diego, California, USA. Pp 1-8.

Basten, H. J. S and Klint, P. 2009. DeFacto: Language-Parametric Fact Extraction

 from Source Code. Springer-Verlag Berlin Heidelberg. Pp 265-284.

Bernstein, A., Ekanayake, J. and Pinzger, M. 2007. Improving Defect Prediction Using

 Temporal Features and Non Linear Models. In Proceedings of Ninth

international workshop on Principles of software evolution: in conjunction with

the 6th ESEC/FSE joint meeting (IWPSE '07). Dubrovnik, Croatia. Pp 11-18.

Bieman, J., Andrews, A. and Yang, H. 2003. Understanding Change-proneness in OO

Software through Visualization. In Proceedings of the 11th IEEE International

Workshop on Program (IWPC). Portland, OR, USA. Pp 44-53.

www.manaraa.com

 101

Bieman, J., Jain, D. and Yang, H. 2001. OO Design Patterns, Design Structure, and

Program Changes: An Industrial Case Study. In Proceedings of IEEE

International Conference on Software Maintenance, Florence Pp 580 589.

Black, P., Kass, M., Koo, M. and Fong, E. 2011. Source Code Security Analysis Tool

Functional Specification Version 1.1. Software and Systems Division.

Canfora, G. and Cimitile, A. 2000. Software Maintenance. University of Sannio,

Faculty of Engineering at Benevento, Italy.

Deissenboeck, F., Juergens, E., Lochmann, K. and Wagner, S. 2009. Software Quality

Model: Purposes, Usage Scenarios and Requirements. In Proceedings of

Software Quality, 2009. WOSQ '09. ICSE Workshop on, Vancouver, Canada.

Pp 9-14.

Deissenboeck, F., Wagner, S., Teuchert, S. and Girard, J.-F. 2007. An Activity-Based

Quality Model for Maintainability. In Proceedings of 23rd IEEE International

Conference on Software Maintenance (ICSM). Paris, France. Pp 184-193.

Drake, T. 1996. Measuring Software Quality: A Case Study. Journal of IEEE Computer.

29 (11): 78-87.

Edberg, D., Ivanova, P. and Kuechler, W. 2012. Methodology Mashups: An Exploration

of Processes Used to Maintain Software. Journal of Management Information

Systems. 28 (2): 271- 304.

EKLÖF, RICKARD 2011. Improving software Development with Static Code Analysis

in a Traceable Environment. .

www.manaraa.com

 102

Engelbertink, F, VOGT, H. 2010. How to save on software maintenance costs.

English, M., Exton, C., Rigon, I. and Cleary, B. 2009. Fault Detection and Prediction in

an Open-Source Software Project. In Proceedings of the 5th International

Conference on Predictor Models in Software Engineering Article. New York,

USA.

Girba, T., Ducasse, S. and Lanza, M. 2004.

engineering efforts by summarizing the evolution of changes. In Proceedings of

the 20th IEEE International Conference on Software Maintenance, pp. 40 49.

Gomes, I., Morgado, P., Gomes, T. and Moreira, R. 2009. An overview on the static

code analysis approach in software development. Tech. rep., Faculdade de

Engenharia da Universidade do Porto.

Gyimothy, T., Ferenc, R. and Siket, I. 2005. Empirical Validation of Object-Oriented

Metrics on Open Source Software for Fault Prediction. Journal IEEE

Transactions on Software Engineering. 31(10): 897-910.

Jones, C. 2012. Software Quality Metrics: Three Harmful Metrics and Two Helpful

Metrics.

Khaddaj, S. and Horgan, G. 2005. A Proposed Adaptable Quality Model for Software

Quality Assurance. Journal of Computer Sciences 1(4): 482-487.

Koru, G., and Liu, H. 2007. Identifying and characterizing change-prone classes in two

large-scale open-source products. Journal of Systems and Software. 80(1): 63

73.

www.manaraa.com

 103

Koru, G. and Tian, J. 2005. Comparing High Change Modules and Modules with the

Highest Measurement Values in Two Large-Scale Open-Source Products. IEEE

Transactions on Software Engineering. 31 (8): 625-642.

Kuhn, A., Ducasse, S. and , T. 2007. Semantic Clustering: Identifying Topics in

 Source Code. Journal on Information Systems and Technologies 49(3): 230-243.

Lochmann, K. and Goeb, A. 2011. A Unifying Model for Software Quality. In

Proceedings of the 8th international workshop on Software quality (WoSQ 11),

Szeged, Hungary. Pp 3-10.

Lucia, A., Deufemia, V., Gravino, C. and Risi, M. 2010. An Eclipse plug-in for the

Detection of Design Patten Instances through Static and Dynamic Analysis. In

Proceedings of 26th IEEE International Conference on Software Maintenance

(ICEM). Timisoara, Romania. Pp 1-6.

Mahmood, Waqas and Akhtar, Muhammad 2010. Validation of Machine Learning and

Visualization based Static Code Analysis Technique. Master Thesis Computer

Science.

Riaz, M., Mendes, E. and Tempero, E. 2009. A Systematic Review of Software

Maintainability Prediction and Metrics. In Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering and Measurement

(ESEM '09). IEEE Computer Society Washington, DC, USA. Pp. 367-377.

Romano, D. and Pinzger, M. 2011. Using source code metrics to predict change-prone

Java interfaces. In Proceedings of 27th International Conference on Software

Maintenance (ICSM'11), IEEE Computer Society, Washington, DC, USA. Pp

303-312.

www.manaraa.com

 104

Romano, D., Raila, P., Pinzger, M. and Khomh, F. 2012. Analyzing the Impact of

Antipatterns on Change-Proneness Using Fine-Grained Source Code Changes.

In Proceedings of 19th Working Conference on Reverse Engineering, WCRE

2012, Kingston, ON, Canada.

Sharif, B. and Maletic, J. 2010. The Effects of Layout on Detecting the Role of Design

Patterns. In Proceedings of the 2010 23rd IEEE Conference on Software

Engineering Education and Training (CSEET '10). Pp 41-48.

Shatnawi, R. and Li, W. 2008. The effectiveness of software metrics in identifying error-

prone classes in post-release software evolution process. Journal of Systems and

Software. 81(11): 1868-1882.

Slaughter, S. and Delwiche, L. 1995. Errors, Warnings, and Notes (Oh My) A Practical

Guide to Debugging SAS Programs. University of California.

Vink, G. and BV, A. 2010. Static Code Analysis (SCA) Standardization Efforts &

Integration in the Software Development Flow.

Xiong, C, Xie, M. and Ng, S. 2011. Optimal software maintenance policy considering

unavailable time. Journal of Software Maintenance and Evolution: Research

and Practice. 23(1): 21-33.

Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J. and Vouk, M. 2006.

On the Value of Static Analysis for Fault Detection in Software. IEEE

Transactions on Software Engineering 32(4): 240-253.

Zhou, Y. and Leung, H. 2006. Empirical Analysis of Object-Oriented Design Metrics

for Predicting High and Low Severity Faults. Journal IEEE Transactions on

Software Engineering. 32(10): 771-789.

www.manaraa.com

 105

CODEPLEX, 2006. Project Hosting for Open Source Software. Retrieved October, 8,

2011 from the World Wide Web: http://stylecop.codeplex.com/.

MSDN, 2012. FxCop. Retrieved March, 10, 2013 from the World Wide Web:

http://msdn.microsoft.com/en-us/library/bb429476%28v=vs.80%29.aspx.

TELERIK, 2002. JustCode. Retrieved October, 15, 2011 from the World Wide Web:

http://www.telerik.com/products/justcode.aspx.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects

Prediction

by:

Qosai Mwafeq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

Traceability Enhancements on Source Code Analysis Tools to Improveالعنوان:
Software Defects Prediction

Al Zoubi, Qosai Mwafeqالمؤلف الرئيسي:

Abu Alhuda, Bilal A. H.، Al Smadi, Izzat M.(Advisor، Co-Advisor)مؤلفين آخرين:

2013التاريخ الميلادي:

إربدموقع:

105 - 1الصفحات:

:MD 743131رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية تكنولوجيا المعلومات وعلوم الحاسوبالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسوب، البرمجيات، برامج الحاسوبمواضيع:

https://search.mandumah.com/Record/743131رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/743131

www.manaraa.com

Traceability Enhancements on Source Code
Analysis Tools to Improve Software Defects

Prediction

by:

Qosai Mwafeq AL-Zoubi

Supervisor:

Professor Dr. Bilal A. H. Abul-Huda

Co-Supervisor:

Dr. Izzat Alsmadi

Computer Information Systems Department

Yarmouk University

May 05, 2013

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

